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STATISTICS IN TRANSITION new series, December 2019 
Vol. 20, No. 4, pp. I−IV 

FROM THE EDITOR   

With this issue of Statistics in Transition new series, we are closing the 26th 
year of our journal’s existence. It has been yet another year of the successful 
continuation of our efforts towards increasing the journal’s recognisability, prestige 
and popularity, especially among the scientific community. This edition, as usual, 
provides an opportunity for us to thank our reviewers for their invaluable 
contribution to ensuring the high quality of articles published in SiTns – their names 
are listed in the acknowledgments.  

Statistics in Transition new series is present in over two dozen international 
indexing databases (including Scopus), and in virtually all of them, its ranking has 
been improving year by year – only recently, Index Copernicus has raised our rating 
to 121.11 points on the ICI Journals Master List. I would like to take this opportunity 
to thank all our collaborators and stakeholders, including our readers, for supporting 
us in various ways and thus making our progress possible on a regular and lasting 
basis.  

The issue consists of eleven articles, arranged under four categories. 
According to the previously-announced and partly-implemented practice of opening 
an issue with an article written by a distinguished author specially invited by the 
Editor, as was the case with the issue featuring a paper by Pfeffermann et al. 
(Vol. 20.2) – this issue opens with a paper by Jacek Wesołowski. The three 
remaining groups of articles encompass original research papers, other articles, 
and research communicates. 

Jacek Wesołowski's Multi-domain Neyman-Tchuprov optimal allocation 
identifies the eigenproblem solution of the multi-domain efficient allocation as 
a direct generalization of the classical Neyman-Tchuprov optimal allocation 
in stratified SRSWOR. This is achieved through the analysis of eigenvalues and 
eigenvectors of a suitable population-based matrix D. The object of this article’s 
interest lies in the structure of the optimal allocation vector and relative variance 
rather than in purely numerical tools (even though the eigenproblem solution 
provides also numerical solutions). The domain-wise optimal allocation and the 
respective optimal variance of the estimator are determined by the unique direction 
(defined in terms of the positive eigenvector of matrix D) in the space RI, where I is 
the number of domains in the population. 

The paper by Erik Šoltés, Silvia Zelinová and Mária Bilíková entitled General 
linear model – an effective tool for analysis of claim severity in motor third 
party liability insurance comes as first under the Research articles section. 
It focuses on the analysis of claim severity in motor third party liability insurance 
under the general linear model. The study was based on a set of anonymized data 
of an insurance company operating in Slovakia, and yielded informative results, 
which, however, cannot be applied universally to all insurance companies. 
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Hybrid multiple imputation in a large-scale complex survey by Humera 
Razzak and Christian Heumann discusses the problem of missing data in large-
scale complex surveys. The paper introduces the 3-stage Hybrid Multiple 
Imputation (HMI) approach, computationally efficient and easy to implement, to 
impute complex survey data sets with both continuous and categorical variables. 
The proposed approach seems to be a good alternative to the existing ones, as it 
yields lower root mean square errors, empirical standard errors and standard errors 
than other approaches. In particular, the HMI method has proven to be superior to 
the existing MI methods in terms of computational efficiency.  

In the paper entitled Linear Cholesky decomposition of covariance 
matrices in mixed models with correlated random effects, authors Anasu 
Rabe, D. K. Shangodoyin and K. Thaga present a modelling approach to the 
covariance matrix in linear mixed models, which facilitates making inference about 
subject-specific effects. This concerns especially the analysis of repeated 
measurement data where time-ordering of the responses induces significant 
correlation. However, as several drawbacks tend to arise when adopting the 
modelling approach, the authors propose a solution – a linear Cholesky 
decomposition of the random effects in a covariance matrix – that neutralizes them. 
The proposed decomposition proves particularly useful in parameter estimation 
using the maximum likelihood and restricted/residual maximum likelihood 
procedures. 

Modelling language extinction using Susceptible-Infectious-Removed 
(SIR) model by Ikoba N. A. and Jolayemi E. T. presents a very interesting 
approach where a stochastic epidemic model has been applied to the model of 
indigenous language extinction. The Susceptible-Infectious-Removed (SIR) 
categorization of an endemic disease has been reformulated to capture the 
dynamics of indigenous language decline. On the basis of the time in which 
a language is expected to be extinct, determined by a modified SIR model, several 
of the surveyed languages appeared to be in danger of becoming extinct 
comparatively soon, while others were doing reasonably well, thanks to intensified, 
inter-family language transfers. 

Rajesh Singh’s and Madhulika Mishra’s article entitled Estimating 
population coefficient of variation using a single auxiliary variable in simple 
random sampling proposes an improved estimation method for the population 
coefficient of variation, which uses information on a single auxiliary variable. The 
authors demonstrate that their estimators are more efficient than the existing ones, 
and verify these results with both empirical and simulation studies. 

Other articles section opens with the paper by Alina Jędrzejczak and Jan 
Kubacki – Estimation of income characteristics for regions in Poland using 
spatio-temporal small area models. This study uses income-related and 
explanatory variables from two separate sources. It compares the properties 
of EBLUPs based on spatiotemporal models with EBLUPs based on spatial models 
obtained separately for each year and with EBLUPs based on the Rao-Yu model. 
The outcome of the analysis demonstrates that spatiotemporal small-area models 
yield more precise results than the spatial ones. In the computations, it was possible 
to perform a decomposition with respect to spatial and temporal parts, thus 
establishing an original, novel solution.  
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III 

In the paper The impact of the applied typology on the statistical picture 
of population ageing in urban areas in Poland – a comparative analysis, 
authors Tomasz Klimanek and Sylwia Filas-Przybył examine the process of 
population ageing in Polish urban areas using methods based on the National 
Official Register of the Territorial Division of the Country (TERYT) classification and 
on the classification for urban areas (LAU 2 units) – Degree of Urbanisation 
(DEGURBA). Several traditional demographic measures for population ageing 
were applied. The comparison of the outcomes of both the above-mentioned ways 
of measuring the phenomenon of population ageing showed some discrepancies 
due to different typologies used (DEGURBA and TERYT).  

Dominika Polko-Zając’s paper On permutation location–scale tests 
presents the advantage of permutation tests over classical parametric tests while 
performing statistical inference. Permutation tests are comparably powerful to 
parametric tests but at the same time require meeting fewer assumptions. As the 
study demonstrated, they work well even when applied to small-size samples, 
where other types of tests usually fail.  

Włodzimierz Okrasa and Dominik Rozkrut, in their paper Subjective and 
community well-being interaction in multilevel spatial modelling framework, 
present the problem of modelling cross-level interaction between the individual and 
community well-being, taking into consideration geographic membership and 
spatial variation. The authors develop an explicitly-spatial, multilevel model in order 
to identify both the space- and place-related effects for the smallest administrative 
units (LAU2 - gminas). In their analysis, two methods for measuring well-being were 
employed: (i) individual (subjective) well-being measure, and (ii) multidimensional 
index of local deprivation composed of eleven domain-scales. The multilevel 
modelling was finally extended by the authors’ attempt to assess the spatial 
variation effect on the cross-level relationships.   

Mir Subzar, S. Maqbool, T. A. Raja, and Prayas Sharma seek for more 
precise and efficient ratio estimators for the estimation of a population mean or 
a population variance in their article entitled A new ratio estimator: an alternative 
to regression estimator in survey sampling using auxiliary information, 
featured in the last section of the journal – Research Communicates and Letters. 
Since using auxiliary information makes it possible to improve sampling designs 
and to enhance the precision and efficiency of the estimators, the presented 
strategy proposes a class of ratio estimators, modified accordingly, to estimate the 
population mean. The study demonstrates that the presented estimator is as 
efficient as the regression estimator, and more efficient than other examined 
estimators. 

 

 
Włodzimierz Okrasa 

Editor  
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Vol. 20, No. 4, pp. V 

SUBMISSION INFORMATION FOR AUTHORS 

Statistics in Transition new series (SiT) is an international journal published 
jointly by the Polish Statistical Association (PTS) and Statistics Poland, on 
a quarterly basis (during 1993–2006 it was issued twice and since 2006 three 
times a year). Also, it has extended its scope of interest beyond its originally 
primary focus on statistical issues pertinent to transition from centrally planned to 
a market-oriented economy through embracing questions related to systemic 
transformations of and within the national statistical systems, world-wide.  

The SiT-ns seeks contributors that address the full range of problems involved 
in data production, data dissemination and utilization, providing international 
community of statisticians and users – including researchers, teachers, policy 
makers and the general public – with a platform for exchange of ideas and for 
sharing best practices in all areas of the development of statistics. 

Accordingly, articles dealing with any topics of statistics and its advancement 
– as either a scientific domain (new research and data analysis methods) or as 
a domain of informational infrastructure of the economy, society and the state – 
are appropriate for Statistics in Transition new series. 

Demonstration of the role played by statistical research and data in economic 
growth and social progress (both locally and globally), including better-informed 
decisions and greater participation of citizens, are of particular interest. 

Each paper submitted by prospective authors are peer reviewed by 
internationally recognized experts, who are guided in their decisions about the 
publication by criteria of originality and overall quality, including its content and 
form, and of potential interest to readers (esp. professionals). 

Manuscript should be submitted electronically to the Editor: 
sit@stat.gov.pl,  
GUS/Statistics Poland, 
Al. Niepodległości 208, R. 296, 00-925 Warsaw, Poland 

It is assumed, that the submitted manuscript has not been published 
previously and that it is not under review elsewhere. It should include an abstract 
(of not more than 1600 characters, including spaces). Inquiries concerning the 
submitted manuscript, its current status etc., should be directed to the Editor by 
email, address above, or w.okrasa@stat.gov.pl. 

For other aspects of editorial policies and procedures see the SiT Guidelines 
on its Web site: http://stat.gov.pl/en/sit-en/guidelines-for-authors/ 
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EDITORIAL  POLICY 

The broad objective of Statistics in Transition new series is to advance the 
statistical and associated methods used primarily by statistical agencies and other 
research institutions. To meet that objective, the journal encompasses a wide 
range of topics in statistical design and analysis, including survey methodology 
and survey sampling, census methodology, statistical uses of administrative data 
sources, estimation methods, economic and demographic studies, and novel 
methods of analysis of socio-economic and population data. With its focus on 
innovative methods that address practical problems, the journal favours papers 
that report new methods accompanied by real-life applications. Authoritative 
review papers on important problems faced by statisticians in agencies and 
academia also fall within the journal’s scope. 
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MULTI-DOMAIN NEYMAN-TCHUPROV OPTIMAL
ALLOCATION

Jacek Wesołowski1

ABSTRACT

The eigenproblem solution of the multi-domain efficient allocation is identified as a
direct generalization of the classical Neyman-Tchuprov optimal allocation in strati-
fied SRSWOR. This is achieved through analysis of eigenvalues and eigenvectors
of a suitable population-based matrix D. Such a solution is an analytical compan-
ion to NLP approaches, which are often used in applications, see, e.g. Choudhry,
Rao and Hidiroglou (2012). In this paper we are interested rather in the structure
of the optimal allocation vector and relative variance than in such purely numerical
tools (although the eigenproblem solution provides also numerical solutions, see,
e.g. Wesołowski and Wieczorkowski (2017)). The domain-wise optimal allocation
and the respective optimal variance of the estimator are determined by the unique
direction (defined in terms of the positive eigenvector of matrix D) in the space RI ,
where I is the number of domains in the population.

Key words: Neyman-Tchuprov allocation, multi-domain allocation, eigenproblem,
stratified SRSWOR.

MSC2010 Classification: 62D05

definition

1. Introduction

Consider a stratified SRSWOR in a population U of size N with strata W1, . . . ,WH ,
which form a partition of U and let Nh denote the size of the stratum Wh, h = 1, . . . ,H.
For a variable Y defined on U we denote yk = Y (k), k ∈U . The standard estimator
of the total τ = ∑k∈U yk has the form τ̂st = ∑

H
h=1 Nhȳh, where ȳh =

1
nh

∑k∈Sh
yk with nh

denoting the size of the sample Sh drawn from Wh, h = 1, . . . ,H. The variance of
τ̂st is D2 = ∑

H
h=1

(
1
nh
− 1

Nh

)
N2

h S2
h, where S2

h = 1
Nh−1 ∑k∈Wh

(yk− ȳWh)
2 is the population

variance in Wh, h = 1, . . . ,H.
In such a setting one of the main issues is the optimal allocation, n= (n1, . . . ,nH),

of the sample among the strata. To this end one may assign a given (relative) vari-
ance of the estimator τ̂st and minimize the costs expressed, e.g. by the total sample
size ∑

H
h=1 nh. An alternative approach is by fixing the total sample size n = ∑

H
h=1 nh

and minimize the (relative) variance of τ̂st . Both cases are solved through the clas-
sical Neyman-Tchuprov optimal allocation procedure (see, e.g. Särndal, Swens-
son and Wretman, 1992). In particular, it is well known that under the constraint

1Statistics Poland and Warsaw University of Technology. E-mail: wesolo@mini.pw.edu.pl.

LitkowiecR
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n = n1 + . . .+nH the Neyman-Tchuprov optimal allocation is

nh = n NhSh
∑

H
g=1 NgSg

, h = 1, . . . ,H. (1)

Then, the optimal relative variance assumes the form

D2
opt =

1
τ2

 1
n

(
H

∑
h=1

NhSh

)2

−
H

∑
h=1

NhS2
h

 . (2)

Note that in order for (1) to be a valid solution it is necessary that

n <
(∑

H
h=1 NhSh)

2

∑
H
h=1 NhS2

h
. (3)

Otherwise, (2) gives a non-positive value which is forbidden.
On the other hand, we may want to minimize ∑

H
h=1 nh under the constraint im-

posed on the variance of τ̂st of the form

H

∑
h=1

(
1
nh
− 1

Nh

)
N2

h S2
h = T,

where T is given. Then, it is well known that the optimal allocation is given by

nh =
NhSh

T+∑
H
g=1 NgS2

g

H

∑
g=1

NgSg, h = 1, . . . ,H. (4)

The optimal size of the sample is

nopt =
(∑

H
h=1 NhSh)

2

T+∑
H
h=1 NhS2

h
. (5)

Note that these two solutions are dual in the following sense: If we insert n := nopt

as given in (5) in the formula (1) we obtain (4). Similarly, if we insert T := τ2D2
opt as

given in (2) in the formula (4) we obtain (1).
However, even if (3) is satisfied the Neyman solution may still not be satisfactory:

it may happen that the formula (1) yields nh > Nh for some h ∈ {1, . . . ,H}. Moreover,
nh as given in (1) typically is not integer-valued. Therefore, in recent years there has
been a growing interest in more refined allocation methods, mostly based on non-
linear programming (NLP), see, e.g. the monograph Valliant, Dever and Kreuter
(2013) and references given therein (actually, the literature on the subject is more
than abundant). Such procedures give remedies for the basic drawbacks of the
Neyman allocation, by imposing block constraints of the form 0 < mh ≤ nh ≤ Nh,
h = 1, . . . ,H, on entries of the allocation vector n. Recently numerical procedures
for optimal positive integer solutions also have appeared in the literature, see, e.g.
Friedrich, Münnich, de Vries and Wagner (2015) or Wright (2017). Nevertheless,
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the Neyman-Tchuprov solution remains the only one which gives insight into the
analytic structure of the optimal allocation and the optimal variance. For example,
it is obvious from (2) that, up to a constant additive term (which is typically small),
the optimal (relative) variance is of order 1/n.

The situation becomes much more complex in the case of multi-domain effi-
cient allocation. In such a setting the population is partitioned into disjoint domains
(eventually, domains are further partitioned into strata). The task is to allocate the
sample in the domains (eventually in the strata in each domain) in such a way that,
simultaneously, the estimators of the total value of a given variable in every domain
and in the whole population have minimal variances or relative variances (the pre-
cise formulation of the problem is given at the beginning of Section 2). Apparently,
such a statement of the allocation problem is natural in many surveys when the goal
is to estimate the parameter of interest not only for the whole population but for all
the domains the population is partitioned into (e.g. admistration regions in a given
country).

NLP procedures are often relatively easily adjustable to multi-domain efficient
allocation. One example of such an adjustment is the procedure proposed in
Choudhry, Rao and Hidiroglou (2012) (referred to as CRH in the sequel), which
is explained in detail later on in this section. A respective useful adjustment of the
Neyman-Tchuprov approach seems to be far more challenging.

One example of such an approach is provided by Longford (2006), where the
author suggested to minimize (under a constraint given by the total sample size)
the objective function

I

∑
i=1

Pi D2(ȳi)+GP+D2(ȳst), (6)

where Pi, i = 1, . . . , I are relative preassigned weights which describe ”importance”
of domains, P+ = ∑

I
i=1 Pi and G is a weight responsible for a priority for the vari-

ance of the population mean estimator. Mathematically, this approach reduces to
the Neyman allocation scheme. The weights (Pi, i = 1, . . . , I) are designed in order
to cover, at least to some extent, jointly the optimality issue for domains and for
the whole population. As pointed out in Friedrich, Münnich and Rupp (2018), the
approach of Gabler, Ganninger and Münnich (2012), in which additional box con-
straints on the strata (or domain) sample sizes are imposed, can be used also in
this context. However, within such multi-domain adjustment it is not clear how to
assess the impact of values of weights Pi, i = 1, . . . , I, and GP+ on variances D2(ȳi),
i = 1, . . . , I, and D2(ȳst). In a numerical example given in the Appendix of Khan and
Wesolowski (2019) it is visible that the control on the domain-wise efficiency within
this kind of approach is rather problematic.

On contrary, the eigenproblem approach to the domain-optimal allocation gives
a full control of the domain-wise efficiency. Moreover, the optimal allocation is given
through explicit formulas, not just numerically. This is the essence of the present
paper, in which we describe the eigenproblem approach as a generalization of the
classical Neyman-Tchuprov methodology to the case of multi-domain optimal allo-
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cation. Such eigenproblem setting in the context of the domain-wise efficient allo-
cation originally was proposed in Niemiro and Wesołowski (2001), and developed
more recently in Wesołowski and Wieczorkowski (2017), and Khan and Wesołowski
(2019). In the first of these papers the authors considered two-stage sampling
schemes with SRSWOR and stratification either at the first or at the second stage.
The setting considered there imposed jointly two sample size constraints: one on
the sample size at the first stage (either in terms of the number of PSUs or SSUs)
and one on the sample size at the second stage. Such constraints setting was
studied also in the second paper, but for a wider family of sampling schemes: SR-
SWOR with stratification at both the first and the second stage and the Hartley-Rao
scheme at the first stage and stratified SRSWOR at the second stage. Each of
these schemes was also considered with additional constraints of equal SSU sam-
ple sizes within each of PSUs. The last of three papers dealt with the problem
under a single sample size constraint, which was formulated in terms of the ex-
pected overall cost. Except of two-stage stratified SRSWOR sampling schemes
taken into account in earlier papers, here a combination of pps sampling and strati-
fied SRSOWR either at the first or at the second stage was also considered. Finally,
the eigenproblem approach was applied in the three-stage sampling scheme with
SRSWOR (with no stratification) at each stage. Survey applications and some addi-
tional refinements of the eigenproblem approach were given, e.g. in Kozak (2004),
Kozak and Zieliński (2005) and Kozak, Zieliński and Singh (2008).

Before we move to a detailed description of the eigenproblem approach, we will
first analyze the setting of CRH. These authors consider a population U partitioned
into disjoint domains Ui, i= 1, . . . , I. In each domain Ui the sample of size ni is drawn
independently according to the SRSWOR, i = 1, . . . , I. The aim is to minimize the
total sample size

g(n) = n1 + . . .+nI

under the constraints for relative variances of estimators of the domain totals

Ti := 1
τ2

i

(
1
ni
− 1

Ni

)
N2

i S2
i ≤ RVoi, i = 1, . . . , I, (7)

where τi = ∑k∈Ui yk is the total for the ith domain, i = 1, . . . , I, and the constraint on
the relative variance of the estimator of population total

S := 1
τ2

I

∑
i=1

(
1
ni
− 1

Ni

)
N2

i S2
i ≤ RVo. (8)

Note that in this approach one specifies conditions for each of domains and for the
whole population separately by assigning (given) upper bounds RVoi, i = 1, . . . , I and
RVo. The problem was solved in CRH under additional box constraints of the form
0 < ni ≤ Ni, i = 1, . . . , I, by the NLP method involving the popular Newton-Raphson
algorithm. An extension of this approach to the case of stratified SRSWOR in each
of the domains is rather straightforward.
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Actually, in the case of the problem considered in CRH with constraints restricted
to (7), i.e. to those imposed on the relative variances of the estimators of domain
totals, the overall sample size is minimized by the trivial solution

ni =
⌈

NiS2
i

τ2
i Ti+NiS2

i

⌉
∈ (0,Ni], i = 1, . . . , I.

Of course, it may happen that for such values of ni’s, i = 1, . . . , I, condition (8) may
not hold and only then the numerical procedure is needed.

NLP solutions, as the one described in CRH, typically are efficient and rather
universal tools for optimal allocation in real surveys, when the practitioners need
just numerical values for allocation of the sample in the particular survey. Neverthe-
less, they have forms of black boxes, that is, they are fed with population data (or
estimates) and their output gives numbers responsible for allocation. Consequently,
such numerical methods do not provide any information on the structure of optimal
solutions (the allocation vector and the optimal relative variance), while such struc-
tural knowledge is important at the stage of survey design, e.g. for assigning proper
efficiency priorities or for strata and/or domains construction.

To shed more light on the structure of optimal solutions we will analyze the
eigenproblem approach. As it has been already mentioned, this methodology was
developed recently in Wesołowski and Wieczorkowski (2017), referred to as WW in
the sequel. To large extent, the results of the present paper depend on a correct
interpretation of introductory Th. 2.3 of WW, where stratified SRSWOR in each of
domains was analyzed. In comparison with WW, the formulas for domain optimal
allocation, which are given in terms of an eigenvector of certain population depen-
dent matrix, will be slightly modified here due to (known) priority weights assigned
to each of domains. More importantly, a new analytic formula for the optimal rela-
tive variance in terms of this eigenvector will be derived. Combined together, these
formulas allow one to conclude that the eigenvector solution is a direct generaliza-
tion of the classical Neyman-Tchuprov allocation. This is the main message of the
present article. In particular, we will see that in the case when there are no domains
(i.e. when I = 1), the new formulas are reduced directly to (1) and (2). Moreover, in
the situation when there are no strata in the domains the eigenvector solution is an
analytic alternative to the NLP solution of CRH. Last but not least, let us mention
that the analytic formulas we obtain can be also used for computing particular val-
ues of the optimal allocation vector (procedures for eigenvectors and eigenvalues
are available in many computer packages, e.g. procedure eigen in the R package).
Typically, numerical values obtained in this way, agree with NLP solutions.

Finally, let us mention that while being attractive at the analytical and theoretical
level, the eigenproblem apporach has its limitations: e.g. it may give the allocation
values which exceed the strata sizes. The NLP black box methods do not have
this deficiency. Therefore, it would be plausible to overcome this drawback of the
eigenproblem approach. In particular, it would be interesting to study the question
whether a recursive version of the proposed methodology, similar to the recursive
Neyman approach (see, e.g. Rem. 12.7.1 in Särndal, Swensson and Wretman
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(1992)), gives the domain-wise efficient allocation with sample strata sizes within
the strata size ranges. At present, this problem is under study. It would be also
interesting to investigate possibilites of multivariate extensions of the eigenproblem
methodology, since in many applications one would like to allocate the sample tak-
ing under account optimality with respect to more than one variable. A step in this
direction was made in Kozak (2004).

2. Minimization of domain-wise relative variances

In the case of stratified domains, Ui =
⋃Hi

h=1 Wi,h, i = 1, . . . , I, the domain relative
variances are

Ti =
1
τ2

i

Hi

∑
h=1

(
1

ni,h
− 1

Ni,h

)
N2

i,hS2
i,h, i = 1, . . . , I, (9)

where Ni,h = #(Wi,h), S2
i,h =

1
Ni,h−1 ∑k∈Wi,h

(yk− ȳi,h)
2, with ȳi,h =

1
Ni,h

∑k∈Wi,h
yk, τi =∑k∈Ui yk

and ni,h being the size of the sample in hth stratum of ith domain, i = 1, . . . , I. The
relative total variance is

S = 1
τ2

I

∑
i=1

Hi

∑
h=1

(
1

ni,h
− 1

Ni,h

)
N2

i,hS2
i,h. (10)

We will minimize simultaneously all Ti, i = 1, . . . , I, as well as S under the con-
straint on the total sample size. To this end to each domain Ui a (known) priority
weight κi > 0 will be assigned. These weights, describing domain-wise efficiency
priorities can be read out e.g. from CRH assignment of the domain-wise relative
variance boundary values RVoi, i = 1, . . . , I. That is, for any i = 1, . . . , I, the priority
weight κi can be taken as κi =

RVoi
RV , where RV = ∑

I
i=1 RVoi.

Then, (9) can be written as

1
τ2

i

Hi

∑
h=1

(
1

ni,h
− 1

Ni,h

)
N2

i,hS2
i,h = κiT, i = 1, . . . , I, (11)

where T is an unknown positive constant. Under (11) the parameter T controls both
the relative variances in domains and the overall relative variance S of the estimator
of the population mean. To see the latter, note that (10) implies

S =

(
1
τ2

I

∑
i=1

ρ
2
i

)
T, (12)

where ρi = τi
√

κi, i = 1, . . . , I. Therefore, T will be called the base of the relative
variance.

To formulate the main result we need to introduce and analyze properties of a
population I× I matrix

D = 1
n aaT −diag(c), (13)
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where

a = (a1, . . . ,aI)
T =

(
1
ρi

Hi

∑
h=1

Ni,hSi,h, i = 1, . . . , I

)T

, (14)

c = (c1, . . . . ,cI)
T =

(
1

ρ2
i

Hi

∑
h=1

Ni,hS2
i,h, i = 1, . . . , I

)T

(15)

and diag(c) is a diagonal matrix with the vector c being its diagonal.

Proposition 2.1 Assume that

n <
I

∑
i=1

(
∑

Hi
h=1 Ni,h Si,h

)2

∑
Hi
h=1 Ni,hS2

i,h

. (16)

Then, D has the unique, simple and positive eigenvalue λ ∗ and the unique unit
eigenvector v∗ ∈ RI associated to λ ∗, which has all coordinates positive.

The proof of this proposition is given in Section 3.
It appears that the eigenvalue λ ∗ and the eigenvector v∗ from Prop. 2.1 are

crucial for the multi-domain version of the classical Neyman-Tchuprov allocation,
which is the main result of this paper.

Theorem 2.2 Consider stratified SRSWOR in all domains (as described above)
with the total sample size

n =
I

∑
i=1

Hi

∑
h=1

ni,h (17)

and assume that (16) holds. Let λ ∗ and v∗ be as in Prop. 2.1.
Then, the multi-domain optimal allocation (with priority weights κi, i = 1, . . . , I),

that is the allocation satisfying (11) with the minimal base of relative variance under
the sample size constraint (17) has the form

ni,h = n v∗i Ni,hSi,h/ρi

∑
I
r=1 v∗r ∑

Hr
g=1 Nr,gSr,g/ρr

, h = 1, . . . ,Hi, i = 1, . . . , I. (18)

For the optimal base of the relative variance Topt we have Topt = λ ∗. Moreover,

Topt =
1

∑
I
i=1 ρ2

i

[
1
n

(
I

∑
i=1

ρi
v∗i

Hi

∑
h=1

Ni,hSi,h

)(
I

∑
i=1

v∗i
ρi

Hi

∑
h=1

Ni,hSi,h

)
−

I

∑
i=1

Hi

∑
h=1

Ni,hS2
i,h

]
. (19)

Remark 2.1 Note that (18), while inserted into (9), implies

Ti,opt =
ρi

nτ2
i v∗i

Hi

∑
h=1

Nh,iSh,i

I

∑
r=1

v∗r
ρr

Hi

∑
g=1

Nr,gSr,g− 1
τ2

i

Hi

∑
h=1

Ni,hS2
i,h. (20)

The proof of Theorem 2.2 is given in Section 3.
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Note that (19) together with (12) implies that, similarly as in the classical Neyman-
Tchuprov case, the overall relative variance is of order 1/n up to the additive (typi-
cally small) constant.

In the boundary case of I = 1, that is, when there are no domains in U , ρ1
v∗1

cancels out in (18) and (19). Consequently, these formulas are transformed into the
original Neyman-Tchuprov formulas (1) and (2), respectively. Also, (16) becomes
(3).

Another boundary case is when there are no strata in domains. Then, from Th.
2.2 we obtain an analytic solution which can be viewed as an alternative to the NLP
approach of CRH. In this case (no strata in domains) the matrix D, as defined in
(13), has a simple form since then

a =
(

Ni Si
ρi

, i = 1, . . . , I
)T

, c =
(

Ni S2
i

ρ2
i
, i = 1, . . . , I

)T
.

Since Hi = 1, i= 1, . . . , I, the inequality (16) is a consequence of the natural assump-
tion n < N, where N = ∑

I
i=1 Ni. Let v∗ be the unique unit eigenvector with positive

coordinates for the simplified D matrix given above (by Prop. 2.1 we know that such
vector v∗ exists).

Corollary 2.3 In the case of SRSWOR in each of domains (no strata) the optimal
domain-wise efficient allocation (with priority weights κi, i = 1, . . . , I) under the sam-
ple size constraint

I

∑
i=1

ni = n < N (21)

has the form
ni = n v∗i NiSi/ρi

∑
I
j=1 v∗j N jS j/ρ j

, i = 1, . . . , I. (22)

Then, the optimal base of the relative variance assumes the form

Topt =
1

∑
I
i=1 ρ2

i

[
1
n

(
I

∑
i=1

ρi
v∗i

NiSi

)(
I

∑
i=1

v∗i
ρi

NiSi

)
−

I

∑
i=1

NiS2
i

]
. (23)

On the other hand, we may want to minimize the sample size n = ∑
I
i=1 ∑

Hi
h=1 ni,h

under the constraints (9) with given Ti, i = 1, . . . , I. A straightforward application of
the Lagrange multipliers gives the analog of (4) of the form

ni,h = Ni,hSi,h
∑

Hi
g=1 Ni,gSi,g

τ2
i Ti+∑

Hi
g=1 Ni,gS2

i,g

, h = 1, . . . ,Hi, i = 1, . . . , I. (24)

Therefore,

nopt =
I

∑
i=1

(
∑

Hi
h=1 Ni,hSi,h

)2

τ2
i Ti+∑

Hi
h=1 Ni,hS2

i,h

. (25)

Similarly as in the original Neyman-Tchuprov case the two approaches are dual
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in the following sense: (18) follows by inserting Ti := Ti,opt as given in (20) into (24);
dually, we note that (20) (again with Ti := Ti,opt ) can be rewritten as the following
relation between elements of the eigenvector v∗

nv∗i

∑
I
j=1 v∗j ∑

Hi
h=1

N j,hS j,h
ρ j

=
ρi ∑

Hi
h=1 Nh,iSh,i

τ2
i Ti+∑

Hi
h=1 Ni,hS2

i,h

, i = 1, . . . , I

and this formula gives (24) when combined with (18).

3. Proofs

The proofs, to some extent, can be read out from Sec. 2 of WW. Nevertheless, to
make this article more self-contained we provide most of the arguments referring
only to a rather technical Prop. 2.2 from WW. The main new aspect of the argument
is related to the formula (19) for the base of relative variances.

[Proof of Prop. 2.1] We first refer to Prop. 2.2 of WW, the proof of which was
based on the Weyl inequalities (relating eigenvalue of the sum of two matrices to
eigenvalues of the summands). Then, see Rem. 2.1 in WW, it follows that there
exists a unique, positive eigenvalue of the matrix D, denoted here by λ ∗. Moreover,
the eigenvalue λ ∗ is simple, i.e. its eigenspace is one-dimensional.

To show that there exists a unit length eigenvector v∗ (associated with λ ∗) with
all coordinates positive we use the celebrated Perron-Frobenius theorem: If A is a
matrix with all strictly positive entries then there exists a unique positive eigenvalue
ν of A, it is simple and such that ν > |λ | for any other eigenvalue λ of A. The
respective eigenvector (attached to ν) has all entries strictly positive (up to scalar
multiplication) - see, e.g. Kato (1981), Th. 7.3 in Ch. 1.

Fix a number α > max1≤i≤I ci > 0. Note that the matrix Dα := D+αId, where Id
is an I× I identity matrix, has all entries strictly positive. For any eigenvalue λ of D
and the respective eigenvector w we have

Dα w = (λ +α)w, (26)

that is, µ = λ +α and w are eigenvalue and associated eigenvector of Dα , respec-
tively. By the Perron-Frobenius theorem, there exists an eigenvalue µ∗ of Dα such
that µ∗ > |λ +α| > λ +α for any other eigenvalue λ +α of Dα . Moreover, the unit
eigenvector v∗ associated with µ∗ has all coordinates positive.

We will show that λ ∗ = µ∗−α. Assume not. Then, there exists an eigenvalue
µ0 < µ∗ of Dα such that λ ∗ = µ0−α. Thus, λ ∗ < µ∗−α = λ̃ , where λ̃ is an eigen-
value of D. Since λ ∗ is the unique positive eigenvalue of D, we obtained a contra-
diction. Therefore, λ ∗ = µ∗−α and Dv∗ = λv∗.

Consequently, λ ∗ is the unique simple positive eigenvalue of the matrix D and
the respective eigenspace is spanned by the unit vector v∗ with all components
positive.

Now we are ready to prove the main result.
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[Proof of Theorem 2.2] With Ai,h =
Ni,hSi,h

ρi
and ci’s defined in (15), equation (11)

can be written as
Hi

∑
h=1

A2
i,h

ni,h
− ci = T, i = 1, . . . , I. (27)

Consequently, the Lagrange function for the minimization problem assumes the
form

F(T,n) = T +
I

∑
i=1

µi

(
Hi

∑
h=1

A2
i,h

ni,h
− ci

)
+µ

I

∑
i=1

Hi

∑
h=1

ni,h.

Upon differentiating with respect to ni,h we obtain

∂ F
∂ ni,h

= µ−µi
A2

i,h
n2

i,h
= 0

which yields v2
i := µi/µ > 0 and ni,h = vi Ai,h, h = 1, . . . ,Hi, i = 1, . . . , I.

Since ai = ∑
Hi
h=1 Ai,h, see (14), the constraint (27) assumes the form

ai− civi = T vi, i = 1, . . . , I. (28)

Moreover, (17) yields 1
n ∑

I
j=1 v ja j = 1. Therefore, (28) can be written in the form

1
n

(
I

∑
j=1

v ja j

)
ai− civi = T vi, i = 1, . . . , I.

Equivalently, Dv = T v with D = 1
n aaT − diag(c), and v = (v1, . . . ,vI)

T . That is, v
which is a vector with positive components, is an eigenvector of D and T is the
eigenvalue associated to v. According to Prop. 2.1, the unique unit vector v satisfy-
ing positivity requirement is v = v∗ and then T = λ ∗. Consequently,

ni,h ∝ Ai,h v∗i , h = 1, . . . ,Hi, i = 1, . . . , I.

Using again the constraint (17) we obtain (18).
On the other hand, we plug ni,h, as given in (18), into the formula for the total

relative variance (10). Upon cancelations we get (19).

4. Conclusion

The minimization of the common base T of the relative variances in the domains
under domain-wise stratified SRSWOR can be achieved analytically through the
eigenproblem approach. The formulas for the allocation as well as for the optimal
relative variance are explicit in terms of the unique unit eigenvector with positive
coordinates of a properly designed population matrix D. Consequently, a direct
(but not straightforward) generalization of the classical Neyman-Tchuprov optimal
allocation is obtained. Although it has similar drawbacks to those of the Neyman-
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Tchuprov allocation, it has its rather unique advantage: it reveals structural prop-
erties of the domain-wise optimal allocation. Additionally, in typical situations, the
eigenproblem approach gives also numerical solutions which are either identical or
close to those obtained through NLP tools. Of course, the NLP procedures allow
one to obtain optimal sample strata sizes not exceeding actual strata sizes. The
eigenproblem approach may give optimal allocations which do not satisfy such re-
quirements. The proper adjustment of the eigenproblem methodology remains a
challenging issue.
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GENERAL LINEAR MODEL: AN EFFECTIVE TOOL FOR 
ANALYSIS OF CLAIM SEVERITY IN MOTOR THIRD PARTY 

LIABILITY INSURANCE 

Erik Šoltés1, Silvia Zelinová2, Mária Bilíková3 

ABSTRACT 

The paper focuses on the analysis of claim severity in motor third party liability 
insurance under the general linear model. The general linear model combines the 
analyses of variance and regression and makes it possible to measure the 
influence of categorical factors as well as the numerical explanatory variables on 
the target variable. In the paper, simple, main and interaction effects of relevant 
factors have been quantified using estimated regression coefficients and least 
squares means. Statistical inferences about least-squares means are essential in 
creating tariff classes and uncovering the impact of categorical factors, so the 
authors used the LSMEANS, CONTRAST and ESTIMATE statements in the GLM 
procedure of the Statistical Analysis Software (SAS). The study was based on a 
set of anonymised data of an insurance company operating in Slovakia; however, 
because each insurance company has its own portfolio subject to changes over 
time, the results of this research will not apply to all insurance companies. In this 
context, the authors feel that what is most valuable in their work, is the 
demonstration of practical applications that could be used by actuaries to estimate 
both the claim severity and the claim frequency, and, consequently, to determine 
net premiums for motor insurance (regardless of whether for motor third party 
liability insurance or casco insurance 

Key words: general linear model, claim severity, motor third party liability 

insurance, least squares means. 

1.  Introduction 

In general, two approaches are used to determine net premiums in non-life 
insurance. Either the target variable is equal to the net premium (euros of loss per 
exposure) or it is separately modelled the claims frequency (number of claims per 
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exposure) and the claim severity (average loss per claim). Goldburd et al. (2016) 
mention that special modelling of frequency and severity is more stable and leads 
to a lower variance of the error term compared to when the net premium is 
directly modelled. In addition, in the case of a separate analysis of frequency and 
severity we can detect effects in the data that we otherwise would not. On the 
other hand, the standard techniques of net premium determination based on 
specific modelling of frequency and severity assume independence between the 
number and the size of claims. Methods that are appropriate in the case of 
correlation between frequency and severity components are dealt with by, e.g. 
Shi et al. (2015). The above facts motivated us to consider a separate modelling, 
so the paper focuses only on the claim severity in motor third party liability 
(MTPL) insurance. Since severity refers to the cost of a claim, through this metric 
we can identify those tariff classes in MTPL insurance which are more expensive 
and those which are cheaper for an insurance company. 

For the calculation of auto insurance premiums, many actuaries use 
techniques based on regression analysis and analysis of variance in their 
scientific work. Very popular models include generalized linear models, which are 
used by, e.g. (De Azevedo et al., 2016), (Kafková and Křivánková, 2014), (Jong 
and Heller, 2008) and (Frees et al., 2016). The Poisson regression model is 
frequently used to model claim frequency and the Gamma regression model is 
used to model claim costs (see, e.g. (David, 2015) and (Duan et al., 2018)). As 
David (2015) indicates, generalized linear models allow for the modelling of a 
non-linear behaviour and a non-Gaussian distribution of residuals, which is very 
useful for the analysis of non-life insurance, where claim frequency and claim cost 
follow an asymmetric density, which is clearly non-Gaussian. A special case of 
generalized linear model (GzLM) is the general linear model (GLM), which we use 
in the article to assess the impact of relevant factors on claim severity. GLM and 
GzLM are two commonly used families of statistical methods to relate some 
number of continuous and/or categorical predictors to a single outcome variable. 
The main difference between the two approaches is that GLM strictly assumes 
that the residuals will follow a conditionally normal distribution, while GzLM 
loosens this assumption and allows for a variety of other distributions from the 
exponential family for the residuals (see, e.g. (Agresti, 2015), (Fox, J., 2015), 
(Kim and Timm, 2006) and (Littell, et al., 2010)). 

GLM includes the t-test, analysis of variance (ANOVA), multiple regression, 
descriptive discriminant analysis (DDA), multivariate analysis of variance 
(MANOVA), canonical correlation analysis (CCA) and structural equation 
modelling (SEM). Therefore, Graham (2008) indicates that the vast majority of 
parametric statistical procedures in common use are part of the general linear 
model. Thompson (2015) discusses GLM as a unifying conceptual framework that 
helps students and researchers understand common features of analyses 
included in GLM. 

The aim of the article is to provide a presentation of the possibility of using 
general linear models for claim severity analysis in motor third party liability 
insurance for the purpose of tariffication. The article does not limit itself to an 
illustration of general linear models by means of a demonstrational example but 
provides the analysis of an actual data set from an unnamed insurance company 
operating in Slovakia. 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Dependent_and_independent_variables
https://en.wikipedia.org/wiki/Dependent_and_independent_variables
https://en.wikipedia.org/wiki/Errors_and_residuals
https://en.wikipedia.org/wiki/Conditional_probability_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Distribution_(mathematics)
https://en.wikipedia.org/wiki/Exponential_family
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In the past, actuaries often relied on a one-way analysis of pricing. However, 
one-way analyses do not consider interdependencies between factors in the way 
they affect claim experience, which is why multivariate methods are more 
effective (Anderson et al., 2007). For this reason, in this paper we use multivariate 
methods included in general linear models, which correct the correlation between 
factors and allow for the investigation of interaction effects.  

2. Research methods 

The general linear model, which will be the subject of interest in our paper, 
can be simplified as follows: 

 


        

ij

ijk i j ijkij
y                                             (1) 

where ijky  is k-th observation of the target (explained) variable Y in cell ij , i.e. at 

the i-th level of factor A and at the same time the j-th level of factor B. We assume 

that the random errors  ijk  are independent of each other and identically 

distributed with the normal distribution  20,N  . 

Let us denote by ij  the mean of the target variable for the i-th variation of 

factor A and the j-th variation of factor B. This mean is called the cell mean for cell 

ij and is defined as the sum of the constant   (intercept), i
- factor A effect,  j  

- factor B effect and  
ij

 – the interaction effect between factors A and B. Note 

that more than two factors will be taken into account in the application part of this 
paper, some will be in the form of quantitative variables and others in the form of 
categorical variables.  

The general linear model can be used to examine several types of effects, 
such as: 

 simple effects, which indicate that one factor level affects the target 

variable, while other factors remain constant at that level; 

 interactions, which characterize how levels of one factor affect the target 
variable across levels of another factor. If, at all levels of 2nd factor, 1st 
factor affects the target variable equally, it is a non-interaction model. If, at 
different levels of 2nd factor, 1st factor affects the target variable differently, 
it is an interaction model; 

 main effects, which reflect the overall differences between the levels of 
each factor averaged across all levels of another factor. 

The focus should be on interaction and then on simple or main effects. If a 
significant interaction is confirmed, it is appropriate to compare simple effects. 
One way to compare the means of the target variable at different levels of one 
factor specifically for different levels of the second factor is to carry out the 
analysis of variance or general linear model separately for different levels of the 
second factor. However, by this separate analysis, we discard some of the 
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information from other levels of the second factor, and this unused information 
manifests itself in a low number of degrees of freedom for SS (ERROR), which is 
central to statistical tests associated with the analysis of variance (Littell et al., 
2010). This inefficient solution would waste a lot of data, which will severely 
reduce the strength of the tests. With the tools in the GLM procedure (PROC 
GLM) of the SAS statistical software, which we use in the paper, it is possible to 
avoid such a problem.  

PROC GLM has options within the LSMEANS statement that allow you to test 
each factor at a particular level of another factor. The LSMEANS statement 
calculates the estimate of the so-called least squares mean (LS mean), also 
referred to as the marginal mean. In unbalanced, multi-way designs, the LS 
means estimation is often assumed to be closer to reality. LS means correct the 
design’s imbalance. In balanced designs, or in unbalanced one-way ANOVA 
designs, observed means and least squares means are the same ((Lenth, 2016) 
and (Cai, 2014)). 

The general linear model can be written in the form of a multiple regression 
model 

0 1 1       i i k ik iy x x                                        (2) 

PROC GLM for estimating the parameters of such a model, therefore, uses 
the least squares method, which results in the formula 

 T Tˆ X X β X y                                                    (3) 

In view of the fact that in the GLM procedure generally considered with the 
classification explanatory variables, which are converted to dummy variables, the 

matrix T
X X  is not of full rank and therefore has no unique inverse. For such a 

situation, PROC GLM computes a general inverse  T


X X  and the parameters 

of the regression model (2) are estimated according the formula  

 T Tˆ 

β = X X X y                                                     (4) 

where the estimated parameter vector β̂  has zero values at the locations that 

correspond to the zero rows in the matrix  T


X X . The estimate β̂  thus obtained 

is not unique. However, there is a set of linear functions ˆLβ  where L  is a linear 

combination of rows of the matrix X , which are called estimable functions (more 
detail in (Agresti, 2015, pp. 14–15) and (Littell et al., 2010, pp. 194–203)) and 
have these features:  

 ˆLβ  and its covariance matrix  ˆVar Lβ  are unique, 

 ˆLβ is an unbiased estimate of Lβ . 

As with the full rank, covariance matrix ˆLβ  is given by the formula 

   2 T Tˆ


 
  

Var Lβ L X X L                                              (5) 



STATISTICS IN TRANSITION new series, December 2019 

 

 

17 

wherein the estimate of the variance of the random error 2

  is the residual 

variance MSE, which is calculated similarly to the multiple regression analysis, 
while the sum of squared error SSE (also known as the sum of squared residuals 

– SSR) is no longer dependent on the general inverse  T


X X . 

3. Preparation of input variables, selection of regressors and verification of 
assumptions about the error term 

Our analysis focuses on the target variable – the claim severity (average 
costs per claim) of passenger cars in MTPL insurance. We modelled this variable 
depending on the following factors: 

 relating to the insured vehicle such as Engine Power (kW, abbr. EP), 
Engine Volume (cm3), Weight (kg), Age (years) and Car Make, 

 relating to the vehicle owner such as Age (years) and Residence.  

We categorized the vehicle owner's age and created the Age_group variable, 
which has six groups: the vehicle owners aged up to 30, aged 30–40, 40–50, 50–
60, 60–70 and over 70 (upper limits of the indicated intervals are closed).  

Since the residuals showed heteroscedasticity (Figure 1, on the left) and were 
markedly right-skewed (Figure 2, on the left) while modelling claim severity, we 
decided to use the logarithmic transformation of the explained variable. In the log-
linear model, which modelled the dependence on the factors considered, the 
residuals had approximately a normal distribution with zero mean (see (Figure 1, 
on the right) and (Figure 2, on the right)). 

Figure 1.  Studentized residuals vs predicted for claim severity (on the left)  
 and vs predicted for logarithm of claim severity (on the right) 

       

Source: Unnamed insurance company, self-processed in SAS Enterprise Guide. 
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Figure 2.  Distribution of residuals for claim severity (on the left) 

 and for logarithm of claim severity (on the right) 

  

Source: Unnamed insurance company, self-processed in SAS Enterprise Guide. 

 
We verified the homoscedasticity of the error term by using the White test. 

This test uses a model of the second squares of residuals depending on the 
predicted values and their squares, while the original test is based on the model 
of squared residuals depending on the original explanatory variables, the squares 
and cross products of independent variables (see (Wooldridge, 2013, pp. 279–

280)). Based on calculated test statistics 
2 3.3376  , which had 2 degrees of 

freedom, we quantified 0.1885 p value . Since p value  is greater than any 

commonly used confidence level, we do not reject the null hypothesis of 
homoscedasticity. 

Based on the average amount of claims incurred in fixing the other considered 
factors, we transformed some of the original explanatory variables during the 
modelling process. We created three groups of vehicle makes and we call the 
resulting variable in other analyses Vehicle_group. This categorical variable has 
values 1, 2 and 3, with category 1 being the makes of vehicles with the highest 
average costs per claim, and category 3 including vehicle makes, where we 
quantified the lowest average costs per claim (in eliminating the influence of other 
factors). Similarly, we developed new categories of the Residence variable, using 
the LS means tests below. This process created a classification variable with 
3 values (A, B and C), with category A (including the regional cities of Košice and 
Trenčín), where we detected the highest average costs per claim, category B 
(including villages, small towns, all district towns as well as the regional cities of 
Bratislava and Nitra) and category C (including the regional cities of Banská 
Bystrica, Prešov, Trnava and Žilina), where we quantified the lowest average 
costs per claim. We have to emphasize that statistically significant differences in 
average costs per claim were not confirmed among the owners’ residence that fall 
within the same category. 
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We included the variables of Engine Power (EP), Engine Volume, Weight, 
Age, Vehicle_group, Age_group and Residence, as well as the polynomials of 
numerical explanatory variables, but also the interaction between the considered 
variables. By the method of backward elimination (Agresti, 2015), factors that did 
not have a significant effect on the explained variable at the confidence level 0.1 
were excluded from the model. At the same time, the equality of the marginal 
means (LS-means) were tested using the Tukey-Kramer test (adjusted Tukey’s 
test appropriate for unbalanced data, see (Wilcox, 2003)). In the case of 
insignificant differences between the marginal means of the target variable on two 
levels of one particular factor and after taking into account the logical context we 
finally merged the original categories of that factor.  

Figure 3.  Comparison of LS means of logarithm of claim severity for factor 
 Age_group 

 

Source: Unnamed insurance company, self-processed in SAS Enterprise Guide. 

In short, we will explain this procedure with the factor of Age_group. This 
factor originally contained 6 categories, but because of the insignificant 
differences in average severity between insured aged 70+ and 60–70, we merged 
these categories to form a category 60+. Similarly, we proceeded in the same 
way in the case of age categories 30-40 years and up to 30 years. However, we 
must remark that in the 70+ and under 30 age groups, the insurance company 
had a low number of claims and, therefore, based on the input database, we 
cannot persuasively claim that young or old vehicle owners (over 70) do not have 
higher or lower average severity compared to the other age categories. In the 
case of the Age_group factor, the next analysis found that insured persons aged 
40 to 50 and under 40 report the smallest average severity, with no significant 
differences between these two age categories, as shown in Figure 3. 

We merged these two categories and present the category of those aged up 
to 50  in the following results. 
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4. Empirical results 

In this section of the paper, we will provide the results of the analysis obtained 
from the PROC GLM of the SAS statistical software. In Section 4.1 we will focus 
on assessing the differences between the individual levels of the competent 
relevant factors and quantifying the impact of these factors on the average claim 
severity of vehicles in MTPL insurance. Section 4.2 offers examples of the 
application of the CONTRAST and ESTIMATE statements that actuaries and 
statisticians can use for further analyses of the impact of the factors on the target 
variable.  

4.1. Estimating the model and quantifying the impact of relevant factors  

As we mentioned in the previous section, the method of backward elimination 
was used to select regressors, in which the statistical significance of a particular 
factor was assessed by the F-test, which uses the partial sum of squares, called 
Type II SS in regression analysis, but Type III SS in the GLM procedure (see 
more in (Kuznetsova et al., 2017), (LaMotte, 2019) and (Littell et al., 2010)). This 
sum of squares for the particular variable represents an increase in SSM due to 
the addition of this variable to the model. This type of sum of squares does not 
depend on the sequence in which the independent variable is loaded into the 
model and is useful to verify the statistical significance of the effect of the 
analysed explanatory variable on the target variable Y. Table 1 confirms the 
significance of the influence of the factors left in the resulting model. 

 

Table 1.  Verifying the impact of considered factors on claim severity 

Source DF Type III SS Mean Square F Value Pr > F 

EP 1 0.86485345 0.86485345 6.72 0.0096 

EP * EP 1 1.03197187 1.03197187 8.02 0.0047 

EP * EP * EP 1 1.28920833 1.28920833 10.01 0.0016 

Age_group 2 2.87135126 1.43567563 11.15 <.0001 

Vehicle group 2 1.82409264 0.91204632 7.08 0.0009 

Residence 2 3.26944802 1.63472401 12.70 <.0001 

Age_group*Residence 4 2.43942634 0.60985659 4.74 0.0008 

Source: Unnamed insurance company, self-processed in SAS Enterprise Guide. 
 

The regression coefficients (Table 2) of the dummy variables, which encode 
the categories of Age_group, Vehicle group and Residence, are statistically 
significant at the 0.1 confidence level. In the above categories, the average 
severity of insurance claim is significantly different from the reference category of 
the relevant factor (at the level of confidence of 0.1). Figures 4 and 5 confirm that 
not only in comparison with the reference category, but among all pairs of 
particular factor categories there are significantly different LS means of the target 
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variable at the 0.1 confidence level. The highest average severity when fixing 
other factors was found for the oldest vehicle owners (in our case over the age of 
60), then in the owners of vehicles from the regional cities of Trenčín and Košice 
and in the makes of vehicles belonging to group 1. On the contrary, we found the 
lowest average severity under ceteris paribus conditions in the group of vehicle 
owners aged under 50, as well as in vehicles of the group 3 and for vehicles from 
the regional cities of Banská Bystrica, Prešov, Trnava and Žilina.  

Table 2.  Estimate of the parameters of general model for natural logarithm  
 of claim severity 

Parameter Estimate  Standard Error t Value Pr > |t| 

Intercept 3.1170 B 0.8205 3.80 0.0002 

EP 0.0907  0.0350 2.59 0.0096 

EP * EP -0.0014  0.0005 -2.83 0.0047 

EP * EP * EP 6.7E-6  0.0000 3.16 0.0016 

Age_group            60+ 1.0729 B 0.2958 3.63 0.0003 

Age_group            50-60 0.8390 B 0.3001 2.80 0.0052 

Age_group            -50 0.0000 B . . . 

Vehicle group        1 0.3854 B 0.1065 3.62 0.0003 

Vehicle group        2 0.2439 B 0.0993 2.46 0.0141 

Vehicle group        3 0.0000 B . . . 

Residence            A 1.0997 B 0.3044 3.61 0.0003 

Residence            B 1.1402 B 0.2380 4.79 <.0001 

Residence            C 0.0000 B . . . 

Age_group*Residence  60+ A -0.1156 B 0.4361 -0.27 0.7910 

Age_group*Residence  60+ B -1.0213 B 0.3029 -3.37 0.0008 

Age_group*Residence  60+ C 0.0000 B . . . 

Age_group*Residence  50-60 
A 

-0.6337 B 0.4865 -1.30 0.1929 

Age_group*Residence  50-60 
B 

-0.7596 B 0.3060 -2.48 0.0132 

Age_group*Residence  50-60 
C 

0.0000 B . . . 

Age_group*Residence  -50 A 0.0000 B . . . 

Age_group*Residence  -50 B 0.0000 B . . . 

Age_group*Residence  -50 C 0.0000 B . . . 

Source: Unnamed insurance company, self-processed in SAS Enterprise Guide. 
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The interaction between the factors Age_group and Residence showed to be 

statistically significant. Based on the LS means tests (Figure 5, on the right) for 
pairs of vehicle owner groups that arose from breaking down by the two 
mentioned factors, we found that not all pairs report different average severities. It 
is clear that because of the interaction of Age_group and Residence factors it is 
significantly the highest claim severity in the case of vehicle owners who live in 
the villages falling into category A and at the same time are aged 60+. On the 
other hand, the general linear model quantified that the lowest average severity is 
among the group of vehicle owners under the age of 50 who live in the regional 
cities of Banská Bystrica, Prešov, Trnava and Žilina. 

 
 

Figure 4.  Comparison of LS means for factor Age_group (on the left) and for 
 factor Vehicle group (on the right) 

 
 
 
 

Source: Unnamed insurance company, self-processed in SAS Enterprise Guide 
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Figure 5.  Comparison of LS means for factor Residence (on the left) and for 
 interaction Age_group×Residence (on the right) 

 

 
 

Source: Unnamed insurance company, self-processed in SAS Enterprise Guide. 

 
 
 

In order to quantify the impact of various factors on the average severity it is 

necessary to convert the estimate of the model 
0 1 1
ˆ ˆ ˆˆln      i i k iky x x  

shown in Table 2 into the form      
1 2

0 1 2
ˆ ˆ ˆ ˆ       

i i
ik

k

x x x

iy e e e e . Naturally, in 

the additive model, the influence of reference categories is at the "0" level, which 

is transformed into a value 
0 1e  in the multiplicative model. Based on the above 

transformation, using the parameter estimates from Table 2, we get   

 
2 3 60 50 60

1 2

60 6

ˆ 22.579 1.095 0.9986 1.000067 2.924 2.314

1.470 1.276 3.003 3.127

0.891 0.360

   

   

   

      

    

 

EP EP EP Age Group Age Group

i

Vehicle Group Vehicle Group Residence A Residence B

Age Group Residence A Age Group

y

0

50 60 50 600.531 0.468

 

       



 

Residence B

Age Group Residence A Age Group Residence B
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The shape of the function with EP (Engin Power) as an explanatory variable 
shows that with a normal engine power of between 50 and 100 kW, the claim 
severity is approximately constant while fixing other factors and starts to rise more 
quickly for vehicles with engine power over 100 kW. In the case of vehicle makes 
falling under category 1, we estimate an almost 1.5 times higher average severity 
than for the 3rd category of vehicles and about 15% higher (1.152 = 1.470 / 1.276) 
than for the 2nd category of vehicles.  

Since there is an interaction between the factors Age_group and Residence, 
the influence of these factors can be quantified from the exponential bases of the 
dummy variables belonging to the variables Age_group, Residence and their 
interactions Age_group × Residence.  

 

Table 3.  Multiplier estimates for vehicle owners broken down by-Age_group and 
 Residence factors 

Age_group 
Residence 

A B C 

60+ 7.822 3.293 2.924 

50-60 3.688 3.386 2.314 

-50 3.003 3.127 1.000 

Source: Unnamed insurance company, self-processed in SAS Enterprise Guide. 
 

It is clear from Table 3 that the highest average loss per claim is for vehicle 
owners over the age of 60 who live in the municipalities of group A (regional 
towns of Trenčín and Košice). The fact that it is the riskiest group from the point of 
view of claim severity was already confirmed in Figure 5 (on the right). Now, we 
have found that their average severity is up to 7.8 times higher than in the case of 
the least risky group, which is vehicle owners under the age of 50 living in villages 
in category C (regional towns Banská Bystrica, Prešov, Trnava and Žilina). 
Similarly, the other multipliers estimated in Table 3 could also be interpreted as 
compared to the "-50 C" reference category. 

4.1. Use of the CONTRAST and ESTIMATE statements for a deeper 
 analysis of the impact factors  

According to Table 3 and the estimated LS means, it appears that in the age 
group of vehicle owners aged 50 to 60, residence has little impact on average 
severity. In the age group 50-60 years, between the residence categories A and 

B, based on the LS means test (Figure 5, 0.7895 p value ), it did not confirm 

the significant difference and thus we can assume equality 0 2 2: A BH . Note 

that for ease of writing, we will use index 2 to denote the second variation of the 
Age_group variable (50-60 years). In order to verify the equality of the 

corresponding 3 means 0 2 2 2:   A B CH , we will test the hypothesis 

 0 2 2 2: 2A B CH       or equivalently  0 2 2 2:0.5 0.5 0A B CH       
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We will verify this hypothesis in the SAS software with the CONTRAST 
statement, using Table 4 to determine the coefficients in this statement. 

 

Table 4.  Coefficients to the CONTRAST statement to verify the hypothesis 

0 2 2 2:0.5 0.5 0    A B CH  

Age_group 

Residence 

Σ 

A B C 

1=60+ 0 0 0 0 

2=50-60 0.5 0.5 -1 0 

3=-50 0 0 0 0 

Σ 0.5 0.5 -1 0 

Source: Self-processed. 

 
Then the statement has a syntax 

 

contrast 'Age_group*Residence 2A 2B vs 2C' Residence 0.5 0.5 -1 
Age_group*Residence 0 0 0 0.5 0.5 -1; 

  
The result of the test is given in the first row in the body of Table 5. Depending 

on the level of confidence, we reject or do not reject the null hypothesis. If we take 
into account the level of confidence of 0.05, we do not reject the null hypothesis 
that the average severity of vehicle owners aged 50-60 in categories A and B is 
the same as that of the residents aged 50-60 in category C. However, at a 
confidence level of 0.1, we reject this null hypothesis.  

A more correct way to verify the hypothesis 0 2 2 2:   A B CH  is by 

simultaneously testing hypotheses 

0 2 2: A BH    and    0 2 2 2: 2   A B CH  

To verify these two hypotheses, we use the CONTRAST statement in the form 

 

contrast 'Age_group*Residence 2A=2B=2C' 
Residence 1 -1  Age_group*Residence 0 0 0 1 -1, 
Residence 0.5 0.5 -1  Age_group*Residence 0 0 0 0.5 0.5 -1; 

 
The result of the simultaneous testing of the two mentioned null hypotheses is 

an F-test statistic with degrees of freedom 2 for the nominator, which is also 
shown in 2nd row of the body of Table 5. Remember that degrees of freedom for 
the denominator correspond to the degrees of freedom SSE.  
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Table 5.  Results of the CONTRAST statement  

Contrast DF 
Contrast 

SS 
Mean Square F Value Pr > F 

Age_group*Residence 2A 2B vs 
2C 

1 0.36714636 0.36714636 2.85 0.0915 

Age_group *Residence 
2A=2B=2C 

2 0.51349173 0.25674587 1.99 0.1365 

Source: Unnamed insurance company, self-processed in SAS Enterprise Guide. 

 
Based on simultaneous testing, we find that even at the confidence level of 

0.1 residence has no significant impact on the average severity in the age 
category of people aged 50 to 60. Given the insignificant differences, an 
insurance company may be interested in the degree of impact on the average 
severity when the insured person is aged 50-60 (on average over all residences). 
We can estimate this by using the ESTIMATE statement using Table 6.  
  

Table 6.  The coefficients for the ESTIMATE statement to estimate     

 the mean  2 2 2, ,  A B CE  

Age_group 
Residence 

Σ 
A B C 

1=60+ 0 0 0 0 

2=50-60 1 1 1 3 

3=-50 0 0 0 0 

Σ 1 1 1 3 

Source: Self-processed. 

 
The values in the body of Table 6 correspond to the coefficients of the means 

2A , 
2B  and 

2C  in the required formula  2 2 2 3   A B C
. These coefficients 

are then taken as coefficients for interaction. The values in the sum column and 
the sum row are used as coefficients for the effects of factors A and B, and the 
sum value in the lower right corner represents the coefficient for the intercept. In 
order to obtain the required average of the three means, we must use the option 
DIVISOR = 3 to divide by the value of 3. The required statement then has the 
form 
 

estimate 'Age_group*Residence mean 2A 2B 2C' 
intercept 3  Age_group 0 3 0 Residence 1 1 1 
Age_group*Residence 0 0 0 1 1 1 / divisor=3; 

 
In addition to the point estimate LS mean for vehicle owners aged 50 to 60 

(across all residences), the first row of the body of Table 8 provides also the test 
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of significance, i.e. the test result  0 2 2 2: 3 0    A B CH . In our case, this 

test is not of great importance, but thanks to the standard error estimate (0.7956) 
we can easily calculate the interval estimate and possibly verify the hypotheses 
that may be of interest to the insurance company. Based on the estimated value 

(4.4479) and its transformation 4.4479 85.45e , we get a multiplier for those 

policyholders aged 50 to 60 (including the intercept). Of course, a part of the 
estimated regression function, which includes the influence of other factors, has 
to be used to estimate the average severity. In our case it is the factors Engine 
power and Vehicle_group, whose impact on the average severity we quantified by 
the expression  

 
2 3 1 21.095 0.9986 1.000067 1.470 1.276    

EP EP EP Vehicle Group Vehicle Group  

The estimate of the average severity for vehicle owners aged 50 to 60 is 
calculated so that the value of the above expression is in addition multiplied by 
the multiplier 85.45. After adjusting for the intercept, 

i.e. 
4.4479 3.1170 4.4479 3.1170 3.7844 e e e , the value 4.4479e  indicates that policyholders 

aged between 50 and 60 have an average severity, which is 3.7844 times higher 
than the reference category, which in our case consists of policyholders under the 
age of 50 from the regional cities of Banská Bystrica, Prešov, Trnava and Žilina.  

If the insurance portfolio of policyholders aged 50 to 60 is 20% residence 
group A, 50% residence group B and residence group C the reminder, then it is 

necessary to use the weighted average of 
2A , 

2B  and 
2C  to calculate the 

overall mean in the group of policyholders aged 50-60. Therefore, the interaction 
coefficients in the ESTIMATE statement follow the 2:5:3 ratio, which is captured 
also in Table 7.  

Table 7.  The coefficients for the ESTIMATE statement to estimate the mean

  2 2 2, ,  A B CE  with weights in the ratio 2:5:3 

Age_group 
Residence 

Σ 
A B C 

1=60+ 0 0 0 0 

2=50-60 0.2 0.5 0.3 1 

3=-50 0 0 0 0 

Σ 0.2 0.5 0.3 1 

Source: Self-processed. 

 
The statement ESTIMATE for the required weight mean has the form  

estimate 'Age_group*Residence w_mean 2A 2B 2C' 
intercept 1 Age_group 0 1 0 Residence 0.2 0.5 0.3 
Age_group*Residence 0 0 0 0.2 0.5 0.3; 

and it generates the output shown in row 2 of the body of Table 8. 
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Table 8.  ESTIMATE statements results 

Parameter Estimate 
Standard 

Error 
t Value Pr > |t| 

Age_group*Residence mean 2A 2B 
2C 

4.4479 0.7956 5.59 <.0001 

Age_group*Residence w_mean 2A 
2B 2C 

4.4492 0.7896 5.63 <.0001 

Source: Unnamed insurance company, self-processed in SAS Enterprise Guide. 

Given the fact that between the means 2A
, 2B

 and 2C
 significant 

differences were not confirmed (Table 5), the selected weights have a minimal 

impact on the overall mean 2  as indicated by the negligible differences in the 
point estimates of the LS means, as shown in Table 8.  

5. Conclusions 

The paper points to the possibilities of using the general linear model to 
analyse claim severity in motor third party liability insurance. In order to make 
adequate use of GLM, it was necessary to apply the logarithmic transformation of 
the explained variable, thereby eliminating the problem of heavy-tailed distribution 
and heteroscedasticity of error terms. Thus, the analyses presented in the paper 
are based on a log-linear model, in which the individual components are in an 
additive formula, which, however, is converted to a multiplicative formula after the 
backward exponential transformation. This fact needs to be taken into account 
when interpreting the results.  

Our analyses confirmed that engine power and engine volume are strongly 
correlated, and their impact on claim severity overlaps significantly. By using the 
backward elimination method, only the engine power was retained from the two 
variables in the model, which avoided strong multicollinearity that could lead to 
problems with the interpretation of the results. Including this variable, categorical 
variables such as the age group and the owner's residence, as well as their 
interaction and the Vehicle group factor, were left in the model from the set of 
explanatory variables (listed in Section 3). Due to the fact that our base is an 
unbalanced multi-factor model, we could not use arithmetic means to compare 
the differences in claim severity at different levels of the relevant factors, so we 
used least squares means. By the gradual merging of categories in which 
comparable LS means of claim severity were estimated, among which there were 
no statistically significant differences, we created 3 groups of vehicle makes, 
3 age categories of vehicle owners and 3 groups of residential cites. The results 
of our research reveal the impact of the relevant factors on claim severity, which 
is quantified by multipliers for each category of relevant factor through the 
exponential transformation of the respective regression coefficients. Since 
a significant interaction between the Age group and the Residence factors was 
confirmed, the paper also quantifies the multipliers for the categories that were 
created by combining the categories of the mentioned two factors.  
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Our empirical study shows that the claim severity does not change 
significantly in vehicles with 50 to 100 kW engine power, and a substantial 
increase occurs only in vehicles with higher power. The highest average severity 
was found in owners aged over 60 and in the owners from the regional cities 
Trenčín and Košice. Vehicle owners who were aged over 60 and had permanent 
residence in Trenčín and Košice showed 7.8-fold higher average severity, with 
other variables fixed, as compared to owners under the age of 50 living in the 
regional towns of Banska Bystrica, Prešov, Trnava and Žilina. That age category 
(up to 50 years) and the category of residence mentioned (Banská Bystrica, 
Prešov, Trnava and Žilina) are the least risky in terms of claim severity and their 
combination reduces the risk.  

The benefit of the paper is not only empirical results, but the paper also points 
to the application of the general linear model to create tariff classes, to estimate 
average severities for these tariff classes and to detect simple and interaction 
effects of relevant factors. The general linear model provides such findings 
through model parameter estimates and least squares means, which are directly 
available in SAS software or which can be quantified using the CONTRAST and 
ESTIMATE statements.  

The paper shows that the general linear model is an effective tool for the 
modelling of claim severity because it allows us to use quantitative and 
categorical regressors and their interactions as well. Unlike other methods, GLM 
provides estimation of the least square means (besides the arithmetic means) of 
the target variable. Moreover, PROC GLM in software SAS offers the 
CONTRAST statement, which is very useful to confirm significant differences 
between tariff classes in motor insurance. The values of these differences can be 
estimated using the ESTIMATE statement. Due to the possibility of testing several 
individual statistical hypotheses for LS means and the possibility of simultaneous 
testing, the GLM procedure is very flexible and proper for the purpose of 
tariffication in motor insurance. One disadvantage of the general linear model is 
the assumptions put on the random error. The error term often does not fulfil the 
assumption about homoscedasticity. In such a case, a researcher can try to use a 
logarithmic transformation as we did in our analysis presented in the article. If it 
does not work, we suggest applying generalized linear models, which are more 
flexible in this aspect. 

Tools of the general linear model applied in the paper can be used by 
actuaries not only in claims severity, but also in claims frequency, and then for the 
determination of net premiums in motor insurance. 
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HYBRID MULTIPLE IMPUTATION IN A LARGE SCALE 
COMPLEX SURVEY 

Humera Razzak1, Christian Heumann2 

ABSTRACT 

Large-scale complex surveys typically contain a large number of variables 
measured on an even larger number of respondents. Missing data is a common 
problem in such surveys. Since usually most of the variables in a survey are 
categorical, multiple imputation requires robust methods for modelling high-
dimensional categorical data distributions. This paper introduces the 3-stage 
Hybrid Multiple Imputation (HMI) approach, computationally efficient and easy to 
implement, to impute complex survey data sets that contain both continuous and 
categorical variables. The proposed HMI approach involves the application of 
sequential regression MI techniques to impute the continuous variables by using 
information from the categorical variables, already imputed by a non-parametric 
Bayesian MI approach. The proposed approach seems to be a good alternative to 
the existing approaches, frequently yielding lower root mean square errors, 
empirical standard errors and standard errors than the others. The HMI method 
has proven to be markedly superior to the existing MI methods in terms of 
computational efficiency. The authors illustrate repeated sampling properties of 
the hybrid approach using simulated data. The results are also illustrated by child 
data from the multiple indicator survey (MICS) in Punjab 2014. 

Key words: complex surveys, high-dimensional data, missing data, multiple 

imputation. 

1. Introduction 

Large scale complex surveys contain high-dimensional data with a large 
number of variables measured on an even larger number of respondents. The 
Multiple Indicator Cluster Surveys (MICS) is such a popular large scale 
international household survey. Like other cross-sectional surveys, the data sets 
from MICS contain complex survey features (e.g. many categorical variables). 
Missing values are also a problem in MICS surveys. Missing data problems arise 
when a sampled unit does not respond to the entire survey (also called unit non 
response) or to a particular question (also called item non response). For 
example, the MICS Punjab 2014 child data set contains more than 200 child 
health background variables on 31083 children under the age of 5. Among all 
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these variables, the missing data rates per variable range from 10% to 95% and 
26 variables have more than 50% missing values. Questions related to a child 
cleaning utensils or washing clothes and physical punishment, etc. may make 
participants reluctant to provide full information, which results in incomplete data 
(Akmatov (2011)) (Cappa and Khan (2011)). 

In recent decades, considerable efforts have been made into the development 
of statistical methods to treat the problem of missing data. Complete-case or 
available-case analysis, or single imputation methods such as mean and 
regression imputation, often result in potentially biased estimates when applied to 
incomplete data (Anderson et al. (1983)). Rubin (1987) proposed multiple 
imputation (MI) as an appropriate alternative under certain assumptions. 
Predictive distributions are used to draw repeated samples in order to simulate 
values for missing data. M>1 complete data sets are generated and point and 
variance estimates of interest are estimated and combined using the formulas 
developed by Rubin (1987). One advantage of MI is the decoupling of the 
imputation task and the analysis task although one has to be careful in choosing 
the imputation and the analysis model (Xie et al. (2017)). 

In this paper, we propose a computationally efficient and an easy to 
implement 3-stage Hybrid Multiple Imputation (HMI) approach to impute complex 
survey data sets that contain both continuous and categorical variables. The HMI 
approach applies sequential regression MI techniques to impute continuous 
variables by using information of categorical variables already imputed by a non-
parametric Bayesian MI approach. This blended version of joint and sequential 
modelling MI techniques makes it possible to obtain complete datasets with both 
types of variables. This approach is motivated by missing values in background 
variables related to children’s life and health in MICS. In order to get valid and 
accurate results, it becomes important to impute all types of variables in MICS. As 
we noted earlier, handling mixed continuous and categorical data in high 
dimensions presents unique challenges to MI. Existing MI methods can be difficult 
to implement in the presence of complex dependence structures among 
categorical variables, whereas some recently developed methods focus on 
missing values of few variables (Zhao and Long (2016)). Moreover, various MI 
techniques are limited to categorical variables or require transformations (or other 
tricks) for continuous variables (Si and Reiter (2013)). 

The reminder of the paper is organized as follows. We begin in Section 2 by 
describing missing data mechanisms. In Section 3, we review imputation methods 
dedicated to categorical, continuous and mixed data in high dimensions. In 
section 4 we illustrate Rubin’s inference and various estimates used for 
comparing the performance of the imputation algorithms. Section 5 presents the 
proposed hybrid architecture. In Section 6 we present the simulation studies and 
relevant results to evaluate our proposed approach.  Section 7 presents the 
imputation of the MICS Child Data. We conclude with a discussion at the end. 

2. Missing data mechanisms 

There are three missing data mechanisms. Missing values in any data can be 
missing completely at random (MCAR), or missing at random (MAR), or missing 
not at random (MNAR) (Rubin (1987)), (Little and Rubin (2002)). Let 𝑌 denote the 
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n × p data matrix with n rows (cases) and p variables. Let 𝑦𝑖𝑗 refer to the value in 

row i  and column j of 𝑌, where i=1,…,n and j=1,…,p. Further, suppose that there 

are two components of the data set 𝑌 = {𝑌𝑚𝑖𝑠𝑠 , 𝑌𝑜𝑏𝑠} where the first component 
denotes the observed part of the data and the second component is the missing 
data.  Let 𝑈 be a response indictor matrix with the same dimensions as 𝑌 
indicating whether an element of 𝑌 is observed or missing: 

 

𝑈𝑖𝑗 = {
0  𝑖𝑓 𝑦𝑖𝑗 𝑖𝑠  𝑚𝑖𝑠𝑠𝑖𝑛𝑔,

  1  𝑖𝑓 𝑦𝑖𝑗 𝑖𝑠  𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑.
 

 
Data is MCAR when 𝑃𝑟(𝑈ǀ𝑌𝑚𝑖𝑠𝑠 , 𝑌𝑜𝑏𝑠)=𝑃𝑟(𝑈), MAR when 

𝑃𝑟(𝑈ǀ𝑌𝑚𝑖𝑠𝑠 , 𝑌𝑜𝑏𝑠)=𝑃𝑟(𝑈ǀ𝑌𝑜𝑏𝑠) and MNAR when 𝑃𝑟(𝑈ǀ𝑌𝑚𝑖𝑠𝑠 , 𝑌𝑜𝑏𝑠) ≠ 𝑃𝑟(𝑈ǀ𝑌𝑜𝑏𝑠) 
(Little and Rubin (2002)). MNAR is also called “non-ignorable” (NI). 

3. Imputation methods for large scale complex surveys  

A complete overview of the state of the art MI methods for accommodating 
nonlinear relationships and best ways to impute categorical and non-normal 
continuous variables is given in Vermunt et al. (2008), Yucel et al. (2011), Lee et 
al. (2012), Seaman et al. (2012) and Lee and Carlin (2017). Information on 
missing categorical data can be obtained by log-linear models (Schafer (1997)).  

Imputation of large scale survey data can become challenging due to the 
presence of irregular missing patterns, interdependent logical constraints and 
data inconsistencies. There exist several approaches for MI for high-dimensional 
data. For example, in hot-deck imputation, which replaces missing values with 
observed values of pre-defined “donor” cells (Marker et al. (2002)), the 
probabilities of donor selection can be modified by respondent sampling weights 
(Andridge (2009)), or a k nearest neighbours (KNN) MI approach based on the 
distance metric for high-dimensional data (Holder (2015)) may be used or 
a principal component method to impute missing values (Audigier et al. (2016)). 
But most of the existing methods are not designed to handle mixed data 
(quantitative and categorical), become difficult to implement in the situation of 
large dimensions and are extremely time-consuming (Erosheva et al. (2002)). 
Moreover, the presence of complex dependence structures can also lead to 
biased estimates (Wirth and Tchetgen (2014)).  

Sequential regression models (Raghunathan et al. (2001)) or fully conditional 
specification (FCS) (Su et al. (2011)), (van Buuren and Oudshoorn (1999)) is 
another general approach for MI. It is an iterative process. It specifies univariate 
conditional distributions on a variable-by-variable basis, and it draws missing 
values iteratively from the specified conditional distributions. FCS is also known 
as MI by chained equations (MICE) (Raghunathan et al. (2001)), (van Buuren and 
Groothuis-Oudshoorn (2011)), (White et al. (2011)), (Su et al. (2011)). The 
researcher can choose a suitable regression model for each incomplete variable 
where all the other variables are included as predictor variables, and a suitable 
imputation method, e.g. predictive mean matching (PMM) (Morris et al. (2014)). 
Examples are a linear regression model for a continuous variable or a logistic 
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regression model for a binary variable. Also, classification and regression trees 
(CART; Breiman (2001)) can be used. Vermunt et al. (2008) and van Buuren 
(2007) applied FCS to impute a small number of categorical and continuous 
variables. The theoretical implementation of this approach may become 
challenging when specified conditional densities become incompatible due to high 
dimensions (White et al. (2011)). Chained equations, when implemented by 
default settings (i.e. ignoring interaction effects in the conditional models) can also 
result in biased estimates. Moreover, standard MICE methods cannot handle 
high-dimensional data (Deng et al. (2016)). Sometimes problems of convergence 
and incompatibility arise when MICE is used to specify univariate conditional 
distributions (Arnold and Press (1989)), (Gelman and Speed (1993)) and due to 
the presence of complex dependencies, implementation of MICE may fail. Similar 
to log-linear models, conditional models in MICE suffer from model selection and 
estimation problems in high dimensions, which makes the regression imputations 
very time-consuming.  

 
Random forest imputation is a method for handling missing data (Stekhoven 

et al. (2012)). Random forest imputation is a machine learning technique for 
nonlinearity and interaction problems and does not require a particular model to 
be specified. Shah et al.  (2014) used random forest imputation for imputing 
complex epidemiological data sets. They found that MI based on random forest 
techniques tends to be more efficient and produced narrower confidence intervals 
as compared to standard MI methods. However, they focused on the setting 
where few variables have missing values. One disadvantage of algorithms based 
on random forests is that they are computationally expensive to implement in high 
dimensions and do not account for the uncertainty of estimating parameters in the 
imputation models (Rubin (1987)). 

Loh et al. (2016) implement CART and forests to overcome incomplete data 
problems when the auxiliary variables are numerous. The study shows that the 
CART and forests methods are more reliable than likelihood methods for MI but 
CART can be biased toward selecting variables that allow more splits (Loh and 
Shih (1997)), (Kim and Loh (2001)). The study by Burgette and Reiter (2010) 
suggests that inferences based on the CART imputation engine can be more 
reliable than default applications of MICE based on main-effects generalized 
linear models. However, despite of various merits, CART methods and other fully 
conditional specifications are subject to odd behaviours, e.g. CART can be biased 
toward selecting variables that allow more splits in high dimensions 
(Raghunathan et al. (2001)), (van Buuren and Oudshoorn (1999)). Categorical 
predictors with many levels can be a major hurdle for CART algorithms. For 
example, over two billion potential partitions are formed for a categorical predictor 
with 32 levels, which makes CART algorithms computationally inefficient for 
standard computers.  

The joint modelling (JM) specification is an alternative to the FCS approach. 
JM involves specifying a multivariate distribution for the data and draws 
imputations from their conditional distributions by Markov Chain Monte Carlo 
(MCMC) methods. Joint distributions of the variables with missing values are also 
specified by parametric, non-parametric and semi parametric models. A non-
parametric Bayesian joint modelling approach for MI for multivariate categorical 
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data presented by Si and Reiter (2013) uses the Dirichlet process mixtures of 
multinomial distributions (DPMPM) (Dunson and Xing (2009)). This approach 
automatically models complex dependencies whereas other MI methods (log 
linear model or conditional logistic regressions) can fail to detect complex 
structures in high-dimensional categorical variables. Akande et al. (2017) 
compared the performance of various MI methods for categorical data. According 
to their study, the Bayesian mixture model approach dominates the approach 
based on chained equations (which uses generalized linear models) and is as 
reliable as imputations based on CART in MICE. They also found that the 
Bayesian joint modelling approach is substantially faster than the FCS methods 
for MI. However, in the presence of a large number of categorical and continuous 
variables, the sequential behaviour of CART can form suboptimal and unstable 
trees (Hastie et al. (2001)), (Marshall and Kitsantas (2012)), (Strobl et al. (2009)). 
Moreover, to implement a fully Bayesian, joint modelling approach as suggested 
by Akande et al. (2017), one has to either discard all continuous variables or to 
categorize them. Murray and Reiter (2016) extended the Bayesian, joint modelling 
approach for multivariate continuous and categorical variables. However, this 
approach involves knowledge of complicated models to create the dependence 
structure between the continuous and the categorical variables. Schafer (1997) 
uses a JM approach called general location models for a mixture of continuous 
and categorical variables. Despite of being superior to FCS and CART in many 
ways, He (2010) suggests that the JM approaches can lack the flexibility needed 
to represent complex data structures arising in many studies (van Buuren (2007)).  

Various recursive partitioning (RP) techniques (Iacus and Porro (2007, 2008)), 
(Nonyane and Foulkes (2007)), (Burgette and Reiter (2010)), (Stekhoven and 
Bühlmann (2012)), (Doove et al. (2014)) were proposed to overcome the problem 
of ignoring interactions in chained equations but most of the proposed methods 
combine recursive partitioning with single imputation instead of multiple 
imputation.  

An approach called multilevel singular value decomposition (SVD) is used by 
Husson et al. (2018) for mixed data. SVD uses the between and within groups 
variability to impute values.  One major drawback of SVD is that it cannot be 
implemented with MI. Geneviève et al. (2018) addressed main effects and 
interaction challenges in mixed and incomplete data frames.  

MI by multiple correspondence analysis (MIMCA) (Audigier et al. (2017b)) 
utilizes the dimensionality reduction property of multiple correspondence analysis 
to impute categorical data with a high number of categories. Estimates obtained 
by MIMCA are as reliable as methods using MI with log linear models or 
conditional logistic regressions. MIMCA is less time-consuming on data sets with 
high dimensions than the other multiple imputation methods. However, MIMCA is 
limited to only categorical variables. Imputation methods that treat the categorical 
data as continuous, for example, as multivariate normal, can work well for some 
problems but are known to fail in others, even in low dimensions (Ake (2005)), 
(Allison (2000)), (Bernaards et al. (2007)), (Finch (2010)), (Graham and Schafer 
(1999)), (Horton et al. (2003)), (Yucel et al. (2011)). 

An iterative singular value decomposition (SVD) algorithm for MI can be a 
good choice for quantitative (Hastie et al. (2015)), qualitative (Audigier et al. 
(2017a)) and mixed data (Audigier et al. (2016)) because of better performance 
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than their counterparts. However, these methods cannot be suitable for the 
complex data we address in this paper. 

Recently, hybrid techniques for imputations have gained a lot of attention 
(Ankaiah et al. (2011)), (Tang et al. (2015)), (Liyong et al. (2016)), (Shukur and 
Lee (2015)). For example, Ankaiah and Ravi (2011) propose a hybrid two stage 
imputation method involving the K-means algorithm and a multi-layer perceptron 
(MLP) in stage 1 and stage 2, respectively. Also, Nishanth et al. (2012) proposed 
a hybrid clustering and model based method, where they combine the K-means 
with an artificial neural network (ANN). Nishanth and Ravi (2013) propose an 
online data imputation framework incorporating data mining techniques. 
Considering the local similarity of data, Li et al. (2013) borrowed the idea from 
clustering and applied it to the problem of missing data imputation. Azim et al. 
(2014) present a hybrid model that uses a multi-layer perceptron and a fuzzy c-
means clustering working in sequence for data imputation. Liang et al. (2015) also 
proposed a novel missing value imputation method using the stacked auto-
encoder and incremental clustering (SAIC). However, obtaining good clustering 
results may become challenging due to the expansion of the data volume with 
existing clustering algorithms. Multiple Imputation using grey theory and entropy 
based on clustering (MIGEC) is another hybrid missing data method proposed by 
Ting et al. (2014). The MIGEC method divides the complete data into clusters and 
selects the nearest cluster based on grey theory for each incomplete instance and 
imputes values using a weighted average based on the information entropy.  

Various other MI approaches are suggested in nested imputation (Rubin 
(2003)), where a set of a variable is imputed based on the former set. Two-stage 
multiple imputation by Harel (2007), Harel and Schafer (2003), Reiter and 
Drechsler (2007), Reiter and Raghunathan (2007) are examples for nested 
imputations. These methods explicitly manage two multiple imputation procedures 
in a dependent structure (Rubin (2003)). Weirich et al. (2014) extended nested 
imputation methods in both continuous and categorical background variables for a 
large-scale assessment. However, we think these procedures are computationally 
more extensive, implemented in limited ways and require further research. Zhao 
and Long (2016) did some recent work for imputation methods in the presence of 
high-dimensional data. However, they focused on the setting where only one 
variable has missing values. Most recently, Nikfalazar et al. (2019) proposed a 
new hybrid imputation method that deals with the missing data issue in the 
Mobility in Cities Database (MCD). Their hybrid method combines features of 
decision trees and fuzzy clustering into an iterative algorithm for missing data 
imputation. 

When dealing with large scale complex data with missing values in high-
dimensional situations, we desire a hybrid multiple imputation approach (HMI) 
that (i) avoids odd behaviours of FCS techniques in high dimensions (ii) avoids 
difficulties of creating complicated models for the dependence between the 
continuous and the categorical variables as in JM approaches (iii) avoids the 
problem of a specification of clusters (iv) offers efficient computation. HMI is a 
flexible and practical technique, which combines properties of existing 
approaches to handle missing values in large scale complex surveys. We 
propose a HMI technique which applies FCS MI techniques to impute continuous 
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variables based on information obtained by categorical variables that are already 
imputed by a JM MI approach. 

4. Materials and methods 

Before introducing the proposed hybrid architecture, a brief description of FCS 
and JM MI methods, Rubin’s inference and various estimates used for comparing 
the performance of the imputation algorithms is given below. 

4.1.  Fully Conditional Specification (FCS): Chained Equations  

The FCS method specifies an imputation model for each variable with missing 
values conditional on the other variables in the data set.  Missing values are 
sequentially imputed in each iteration. Imputation starts from the first variable with 
missing values. 

 In the first step, initial values for missing values in all variables are specified, 

i.e. 𝑌1
0 , ... ,𝑌1

0. 
 In the second step, at iteration t: for j  = 1 to p, most recently imputed values, 

i.e. X, 𝑌1
𝑡, ... ,𝑌𝑗−1

𝑡 ,𝑌𝑗+1
𝑡−1 , ... ,𝑌𝑝

𝑡−1 of all other variables, X, 𝑌2
𝑡−1, ... , 𝑌𝑝

𝑡−1 for j=1 and 

𝑌1
𝑡−1, ... ,𝑌𝑝

𝑡−1 use a univariate method to impute all missing values in the  jth 

variable 𝑌𝑗
𝑡.  Here, X denotes a set of variables that have no missing values. 

Repeat the second step until the maximum number of iterations is reached. The 
above steps (including the first one) are repeated M times to get M imputations. 
The starting values for each chain are generated with a different seed for random 
numbers to generate different initial values. 

4.2.  Fully Bayesian joint modelling (JM) using Dirichlet process infinite 
mixtures of products of multinomials (DPMPM) 

The fully Bayesian, joint modelling (JM) approach known as “Dirichlet process 
mixtures of products of multinomial distributions model” (DPMPM) (Dunson and 
Xing, (2009)) is described as: 

1. Assume that each individual i belongs to exactly one of K < ∞ latent classes. 

2. For i = 1,…, n, let 𝑔𝑖 𝜖  { 1, … , 𝑘}  indicate the class of individual i, and let 𝜋𝑘 =Pr 
(𝑔𝑖 = 𝑘) . Assume further that  𝜋  =  {𝜋1, … , 𝜋𝑘} is the same for all individuals. 

3. Within any class, we suppose that each of the j variables independently 
follows a class-specific multinomial distribution, i.e. for any value 

                             𝑦 𝑗   𝜖  { 1, … , 𝑑𝑗}, let 𝜙𝑘𝑐𝑗
(𝑗)

= 𝑃𝑟(𝑦𝑖𝑗 = 𝑦𝑗  ǀ𝑔𝑖 = 𝑘). 

Note that dj denotes the number of categories of the j-th variable. 
 
Mathematically, the finite mixture model can be expressed as follows: 
 

           𝑦𝑖𝑗|g𝑖 , 𝜙    𝑖𝑛𝑑
 ~

  Multinomial (𝜙𝑔𝑖1
(𝑗)

, … , 𝜙𝑔𝑖𝑑𝑗

(𝑗)
) for all i and  j                     (4.1) 

                        g𝑖| 𝜋 ~ Multinomial (𝜋1, … , 𝜋𝐾) for all i                              (4.2) 
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For prior distributions on 𝜙 and 𝜋 , we have 

  𝜋𝑘 = 𝑉𝑘  ( ∏ 1 − 𝑉𝑔𝑙<𝑘 )  For k=1,…,K 

𝑉𝑘    
  𝑖𝑖𝑑
  ~

   𝐵𝑒𝑡𝑎 (1, 𝛼)     

𝛼  ~ Gamma (𝑎𝛼, 𝑏𝛼 ) 

𝜙𝑘𝑗   ~ Dirichlet    ( 𝑎𝑗1 , … , 𝑎𝑗𝑑𝑗
)  

We set 𝑎𝑗1=…= 𝑎𝑗𝑑𝑗
 = 1 for all j, and (𝑎𝛼 = 0.25; 𝑏𝛼 = 0.25). In order to get 

complete data sets, first the latent class indicator for each individual is drawn from 
the full conditional and then each missing 𝑦𝑖𝑗 is drawn from the class specific, 

independent multinomial distributions.  

4.3. Rubin’s inference: 

For m = 1,…,M, let 𝑞(𝑚) and 𝑢(𝑚) be respectively the point estimates of Q (e.g. the 
estimated regression coefficient in an analysis model) and the variance estimates 

of 𝑞(𝑚) of the interesting analysis model, e.g. a parametric regression model. 

Valid inferences for a scalar Q are obtained by combining the 𝑞(𝑚) and 𝑢(𝑚),  
using Rubin’s (1987) rules as follows: 

                                                   𝑞
𝑀

=∑
𝑞(𝑚)

𝑀

𝑀
𝑚=1 ,                                          (4.3) 

                                               𝑏𝑀=∑
(𝑞(𝑚)−𝑞𝑀)2

𝑀−1

𝑀
𝑚=1 ,                                      (4.4) 

                                             𝑢𝑀 =∑
𝑢(𝑚)

𝑀

𝑀
𝑚=1  ,                                          (4.5)  

 

𝑞
𝑀

 can be used to estimate Q and  the variance of 𝑞
𝑀

 can be estimated by 

                                       𝑇𝑀 =  (1 +
1

𝑀
) 𝑏𝑀 + 𝑢𝑀,                                         (4.6) 

 with degrees of freedom 𝑣𝑀 = (𝑀 − 1)(1 +
𝑢𝑀

((1+
1

𝑀
)𝑏𝑀)2

).                                   (4.7) 
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5. Proposed hybrid architecture 

 

 

Figure 1.  Schematic diagram illustrating the proposed hybrid architecture  

 
 
A schematic diagram illustrating the proposed hybrid architecture is provided 

in Figure 1. The proposed missing data imputation approach is a 3-stage 
approach. Step 1: We begin by partitioning incomplete data into two different 
groups, i.e. categorical data → Miss.cat and incomplete continuous data → 
Miss.num, where Miss.cat and Miss.num may contain missing values. After 
partitioning, multiple complete versions → Imp.cat are created for Miss.cat by 
applying a fully Bayesian joint modelling approach to MI. In this step, Miss.num 
still contains missing values. Step 2: All variables in the data set Miss.num are 
added to each of the Imp.cat data sets, resulting in M partially imputed datasets 
where values in the continuous variables may be missing and values in the 
categorical variables have already been imputed in step 1. Step 3: Incomplete 
continuous variables in the M partially imputed datasets are imputed using MICE 
such that the draws from the posterior predictive distribution of the unobserved 
continuous data depend on the given categorical variables, which have been 
already imputed by the fully Bayesian joint modelling MI.  

To implement the HMI approach, we combine a JM approach “DPMPM” with 
the FCS approach MICE. We select “DPMPM” due to its computational efficiency, 
its ability to automatically model complex dependencies and its successful 
implementation for the case of high-dimensional categorical variables in various 
fields, i.e. econometrics (Chib and Hamilton (2002), Hirano (2002)), social science 
(Kyung, Gill, and Casella (2010)), and finance (Rodrı´guez and Dunson (2011)). 
MICE is selected due to its open source character and popularity. R (R Core 
Team (2018)) software, version 3.0.1 is used to perform all calculations. The two 
R packages “mice” (van Buuren and Groothuis-Oudshoorn, (2011)), version 2.17 
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and “NPBayesImputeCat” (Quanli et al. (2018)), version 0.1 are used to 
implement the HMI approach. The “default” function of “mice” uses predictive 
mean matching (PMM) for continuous variables, logistic regression for factor 
variables with two levels and multinomial logit model for more than two 
categories. We also use the package 'mitools' (Thomas (2019)) to combine the 
results from MI. Default versions of chained equations using “mice” fail to impute 
missing values in the child data. The neural net function, called by “mice” for 
categorical variables with more than two categories, stops the default version 
because of exceeded "maximum allowable number of weights". The function 
“nnet” is used to prevent running code that will take a very long time to complete 
when there are factor variables with many levels. This gives an indication that 
complex dependence structures in the data make it complicated to identify them 
by the default application of MICE. Therefore, we did not implement the default 
version and compare two HMI approaches, i.e. “H.CART” and “H.DEF” with the 
MICE based method “MiceCART” (classification and regression trees (CART)). 
“H.CART” and “H.DEF” combine a fully Bayesian joint modelling approach with 
the MICE algorithms “CART” and “Default”, respectively. To implement the hybrid 
approach, we examine a small prior specification for 𝑎𝛼 and  𝑏𝛼 (i.e. 𝑎𝛼= 0.25, 𝑏𝛼 
= 0.25) with a moderate number of mixture components (i.e. k=80).  

6.  Simulation studies 

To investigate the performance of the HMI method via simulation, we 
generate a large number (X=39) of mixed type variables. First, we generate 31 
binary (Xb) variables. A multivariate normal (MVN) distribution is used to generate 
correlated random covariates Ci comprising 1000 observations. The marginal 
distributions are: Ci ~ N (0, 0.5), where i={1,…,31}.The correlation structure is 
given as:   

                                          R = (
1 ⋯ 𝜌
⋮ ⋱ ⋮
𝜌 ⋯ 1

). 

Where 𝜌 = 0.5. Random covariates (Ci) are transformed into binary values 
(Xb) using the following threshold: 

  

𝑋𝑏𝑖 
=  {

0   𝑖𝑓    𝐶𝑖  ≤ 0 ,   
   1   𝑖𝑓    𝐶𝑖  > 0,        

 

where i={1,…,31}.  

 
In order to generate two multilevel categorical covariates, i.e. (𝑋𝑚1 

and 𝑋𝑚2 
), 

we first generate two random covariates from normal distributions (ND) given as: 

  𝐶32  ̴  𝑁 (𝜇1; √2),   𝐶33   ̴  𝑁 (𝜇2; √2), where 𝜇1 and 𝜇2 are described as: 

𝜇1  =  0.1 + 0.1 ∑ 𝑋𝑏𝑖 

31
𝑖=1 + 0.1𝑋𝑏2 

𝑋𝑏3 
+ 0.1𝑋𝑏5 

𝑋𝑏8 
+ 0.1𝑋𝑏2 

𝑋𝑏29
..                  (6.1) 

𝜇2  =  0.1 + 0.1 ∑ 𝑋𝑏𝑖 
+31

𝑖=1 0.1𝐶32 + 0.1𝑋𝑏2 
𝑋𝑏3 

+ 0.1𝑋𝑏5 
𝑋𝑏8 

+ 1.1𝑋𝑏2 
𝑋𝑏29

.    (6.2)  
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Further, all observations in 𝐶31and 𝐶32 are randomly split into various 

homogeneous groups and two multilevel categorical variables 𝑋𝑚1 
and 𝑋𝑚2 

 are 

formed with four and six categories respectively. 
To encode complex dependence relationships with higher order interactions, 

we generate another binary covariate 𝑋𝑏32  from Bernoulli distributions with 

probabilities governed by the logistic regression with  
 𝑙𝑜𝑔𝑖𝑡 𝑃𝑟 (𝑋𝑏32

) = 0.001 −  0.01𝑋𝑏1 
−  0.09𝑋𝑏2 

− 0.09𝑋𝑏3 
− 0.09𝑋𝑏4 

+ 0.05𝑋𝑏5 
+

0.08𝑋𝑏6 
−  0.02 𝑋𝑏7 

+ 0.08 𝑋𝑏8
 + 0.01𝑋𝑏9 

+  0.01 𝑋𝑏10 
− 0.02 𝑋𝑏11 

+ 0.01𝑋𝑏𝑖12
−

 𝑋𝑏13 
 + 0.02𝑋𝑏14 

− 0.01𝑋𝑏15 
+  0.02 𝑋𝑏16 

− 0.03𝑋𝑏17 
− 0.02𝑋𝑏18 

−  0.07𝑋𝑏19 
+

0.08𝑋𝑏20 
+ 0.08𝑋𝑏21 

+ 0.01𝑋𝑏22 
+ 0.09𝑋𝑏23 

+ 0.09𝑋𝑏24
 +  0.05𝑋𝑏25 

+ 0.08𝑋𝑏26 
−

0.02𝑋𝑏27 
 +  0.08𝑋𝑏28 

+ 0.08𝑋𝑏29 
− 0.01𝑋𝑏30 

+ 0.09 𝑋𝑏31 
+ 0.02 𝐶32 + 0.02𝐶33 +

0.02 𝑋𝑏12 
𝑋𝑏29 

− 0.02𝑋𝑏15
𝑋𝑏18 

𝑋𝑏29 
.                      

   (6.3 
                           

We then generate two continuous covariates, i.e. 𝑋𝑛1  
and 𝑋𝑛2   from normal 

distributions (ND) as follows: 

𝑋𝑛1 
 ̴  𝑁 (𝜇3; √0.5). 

Where, 𝜇3 =  −2 −  1.5𝑋𝑏1 
+  2.15𝑋𝑏2 

+ 2.25 𝑋𝑏3 
− 3.6 𝑋𝑏4

− 1.88𝑋𝑏5
+

1.11 𝑋𝑏6 
+ 2𝑋𝑏7 

− 5𝑋𝑏8 
+ 𝑋𝑏9 

− 2𝑋𝑏10 
+ 2𝑋𝑏11 

+ 5𝑋𝑏12 
− 2𝑋𝑏13 

+ 3𝑋𝑏14 
 +

4𝑋𝑏15 
 + 𝑋𝑏16 

 + 𝑋𝑏17 
− 𝑋𝑏18 

− 𝑋𝑏19 
− 𝑋𝑏20 

 − 𝑋𝑏21 
− 𝑋𝑏22 

+ 2𝑋𝑏23 
− 𝑋𝑏24 

+ 𝑋𝑏25 
+

𝑋𝑏26 
+ 𝑋𝑏27 

+ 𝑋𝑏28 
 + 𝑋𝑏29 

+ 𝑋𝑏30 
+ 𝑋𝑏31 

+ 2𝐶32 − 𝐶33 +  𝑋𝑏32
+ 2𝑋𝑏11 

𝑋𝑏12 
𝑋𝑏13 

−

2 𝑋𝑏15
𝑋𝑏18 

+ 2𝑋𝑏12
 𝑋𝑏29

.                           

  (6.4)  

And 

                                                𝑋𝑛2 
 ̴  𝑁 (𝜇4; √0.5).                                               (6.5) 

Where, 𝜇4 =  𝜇3+  𝑋𝑛1 
.   

 (6.6) 
Both continuous covariates are highly positively correlated, i.e. 𝑟 = 0.9. 
We then define a covariate dependent continuous response with expectation 

𝜇𝑦 = 1 + ∑ 𝑋𝑏𝑖 
+32

𝑖=1 ∑ 𝑋𝑛𝑖 

4
𝑖=1 +  ∑ 𝑋𝑚1_𝑖 

4
𝑖=2 + ∑ 𝑋𝑚2_𝑖 

6
𝑖=2 + 𝑋𝑏9 

𝑋𝑏15 
+ 𝑋𝑏1 

𝑋𝑏17 
+

𝑋𝑏14 
𝑋𝑏20 

+ 𝜖.    

                                                                    (6.7)  

Additionally, a random component 𝜖    ̴   𝑁 ( 0;  0.5) is added. The regression 
coefficients for categorical variables with multiple levels are expressed as dummy 

variables, e.g. ∑ 𝑋𝑚1_𝑖 

4
𝑖=2  and ∑ 𝑋𝑚2_𝑖 

6
𝑖=2  in the predictor (all coefficients are 1.0).     

Equations 6.1–6.7 include higher-order interactions to represent complex 
dependence structures. Imputation approaches based on log-linear models or 
chained equations may fail to capture these structures. There is no particular 
importance of the specific values of the coefficients. Nonzero coefficients are 
specified for higher order interactions for generating complex dependencies. The 
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analysis model of interest is the linear model. Observations in all covariates can 
be missing (at random) with probabilities based on a logistic probability 
distribution model. Probabilities for missing for a random covariate X are given as: 

𝜋𝑋𝑖
=    

𝑒
(−2−𝑋𝑗)

(1 + 𝑒
(−2−𝑋𝑗)

)
. 

Here, i={1,…,39} and j ≠ i. Missingness in 𝑋𝑖 is attributed solely to other 

observed variable 𝑋𝑗. This yields 10% of the observations to be MAR. Based on 

recommendations in the MI literature (White et al. (2011)), (van Buuren (2012)), 
we decided to include all of the variables from the generated data in the 
imputation model to ensure that the imputation model preserves the relationships 
between the variables of interest (Schafer (1997)), (Moons et al. (2006)). Based 
on Z =1000 simulation runs, the parameters of interest are estimated using the 
aforementioned Rubin’s method. According to Rubin (1987), the number of 
suitable imputations for useful statistical inferences can be determined by a 
fraction of missing data. A surprisingly high relative efficiency can be obtained 
with no more than five imputations. Fichman and Cummings (2003) suggest, that 
M=10 imputations are more than suitable in almost any realistic application. 
Therefore, ten imputed datasets are generated for each of the proposed and the 
MICE MI methods. Two hundred iterations (for each imputation step) are run to 
insure convergence and to obtain results of the simulations in a reasonable time. 
To compare the performance of the imputation algorithms, two error-based 
measurements were chosen to evaluate the quality of MI: Root mean square error 
(RMSE) and empirical standard errors (ESE) (Akande et al. (2017)), (Armina et al. 
(2017)). Smaller values for RMSEs and ESEs indicate better performance (Oba et 
al. (2003)). RMSE and ESE are calculated using the following formulas: 

Root mean square error (RMSE 𝑞𝑚
) =√∑ (�̅�𝑀

𝑧 − 𝛽 )
2𝑍

𝑧=1

𝑍
,                            (6.8) 

Empirical standard errors (ESE 𝑞𝑚
) =√∑ (�̅�𝑀

𝑧 − �̅� )
2𝑍

𝑧=1

𝑍
,                             (6.9) 

where �̅�𝑀
𝑧  denotes the estimated parameter pooled over M imputed data sets in 

simulation run number z and β  denotes the original parameter. The arithmetic 

mean of �̅�𝑀
𝑧  and (√𝑇𝑀  ) across all z = {1,…,Z} simulations are denoted as  �̅� and 

√𝑇 ̅̅ ̅̅ ̅. The amount of bias can be calculated by a simple difference, i.e.  
    

                                  𝐵𝑖𝑎𝑠 =  𝑅𝑀𝑆𝐸 –  𝐸𝑆𝐸                                  (6.10) 
 

The coverage rates of at least 95% are calculated as:  
 

                  Coverage rate 𝑞𝑚
= 

∑  1 [𝛽 ∈𝐶𝐼 (�̅�𝑀
𝑧 ,𝑇𝑀

𝑧 )]𝑍
𝑧=1

𝑍
 ,                        (6.11)   

 
where 1 [𝛽 ∈  𝐶𝐼 (�̅�𝑀

𝑧 , 𝑇𝑀
𝑧 )] is an indicator function.  The indicator function is equal 

to one when the confidence interval based on  �̅�𝑀
𝑧   and 𝑇𝑀

𝑧  contains 𝛽 and equal to 
zero otherwise. 
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Table 1 gives the performance of the MI methods. Means for CI coverage and 
RMSEs over all beta coefficients are presented in Table 2. Various researchers 
(White et al. (2011)), (van Buuren, 2012)) recommend graphical comparisons of 

the imputation methods. For that purpose, boxplots of standard errors (√𝑇𝑀  ) and 

point estimates (𝑞
𝑀

) for the regression coefficients  for the 1000 simulation runs 

are presented in Figures 2 and 3 respectively.  

6.1. Results 

 

Table 1.  Performance of methods for MI 

 

 

Estimates Parameter MICECART H.DEF H.CART 

RMSES (ESEs) 𝑋𝑏23 
 

𝑋𝑚1_2 
 

𝑋𝑚2_3 
 

𝑋𝑏32 
 

𝑋𝑛2 
 

𝑋𝑏1 
𝑋𝑏17 

 

0.158(0.114) 
0.158(0.155) 
0.187(0.148) 
0.045(0.032) 
0.063(0.063) 
0.190(0.182) 

0.148(0.089) 
0.228(0.122) 
0.167(0.114) 

0.071(0) 
0.071(0.032) 

0.239(0.130) 

0.122(0.110) 

0.173(0.158) 
0.164(0.145) 
0.032(0.032) 
0.055(0.055) 

0.195(0.190) 

�̅�(√𝑇 ̅̅ ̅̅̅) 𝑋𝑏23 
 

𝑋𝑚1_2 
 

𝑋𝑚2_3 
 

𝑋𝑏32 
 

𝑋𝑛2 
 

𝑋𝑏1 
𝑋𝑏17 

 

 

0.891(0.192) 
1.038(0.266) 
0.887(0.245) 

0.969(0.049) 
1.014(0.088) 

0.951(0.319) 

1.119(0.137) 
0.808(0.193) 
1.122(0.176) 
1.065(0.027) 

0.935(0.049) 
0.800(0.255) 

0.947(0.137) 

0.928(0.272) 
0.920(0.249) 
1.006(0.047) 
0.995(0.086) 
0.958(0.225) 

Bias 
 
 
 
 

 
 
 
 

Coverage(%) 

𝑋𝑏23 
 

𝑋𝑚1_2 
 

𝑋𝑚2_3 
 

𝑋𝑏32 
 

𝑋𝑛2 
 

𝑋𝑏1 
𝑋𝑏17 

 

 
𝑋𝑏23 

 

𝑋𝑚1_2 
 

𝑋𝑚2_3 
 

𝑋𝑏32 
 

𝑋𝑛2 
 

𝑋𝑏1 
𝑋𝑏17 

 

0.044 
0.772 
0.039 

0.013 
0.956 
0.008 

 
 
99 
100 
100 
97 
99 
100 
 
   

0.059 
0.615 

0.053 
0.071 
0.886 

0.109 
 

 
95 
94 
97 
29 
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Root mean square errors and empirical standard errors (top), point estimates, 
standard errors and bias for different methods (middle) and estimated coverage 
probability (bottom) for MI methods under the Missing at Random (MAR) 
assumption. The middle panel lists the mean estimated standard errors and point 
estimates across the simulated data sets. All results are based on 10 imputations. 
Estimates are shown for only six regression coefficients, i.e. for variables 𝑋𝑏23 

, 

𝑋𝑚1_2 
, 𝑋𝑚2_3

, 𝑋𝑏32 
, 𝑋𝑛2 

, 𝑋𝑏1 
𝑋𝑏17 

. Bold figures indicate the smallest mean root 

mean square errors, mean empirical standard errors and amount of bias among 
the three imputation variants. 

 

Table 2.  Results over all beta coefficients 

 
 

Means for CI coverages and RMSEs are estimated over all regression 
coefficients for all MI methods. Bold values indicate the smallest mean for RMSEs 
over all regression coefficients among the three imputation variants. 

 
 

Figure 2. Simulated data: Boxplots for the point estimates (𝑞
𝑀

) across 1000 

simulations by imputation methods under Missing at Random (MAR) 
and ten imputations. Point estimates are shown for only six regression 
coefficients, i.e. for variables 𝑋𝑏23 

, 𝑋𝑚1_2 
, 𝑋𝑚2_3

, 𝑋𝑏32 
, 𝑋𝑛2 

, 𝑋𝑏1 
𝑋𝑏17 

.The 

horizontal red lines indicate the respective “true” values  

 

 

Estimates MICECART H.DEF H.CART 

 CI coverage  

  RMSEs  

98.66 

0.184 

91.91 

0.170 

 99.89 

 0.146 
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Figure 3. Simulated data: Boxplots for standard errors (√𝑇𝑀  ) across 1000 

simulations by imputation methods under Missing at Random (MAR) 
and ten imputations. Standard errors are shown for only six regression, 
i.e. 𝑋𝑏23 

, 𝑋𝑚1_2 
, 𝑋𝑚2_3

, 𝑋𝑏32 
, 𝑋𝑛2 

, 𝑋𝑏1 
𝑋𝑏17 

 coefficients 

 
The average point estimates based on H.CART are closer to the 

corresponding true values than those based on CART. H.CART tends to be less 
biased as compared to the CART method for all types of covariates and 
interaction terms, whereas H.DEF tends to be upward biased for binary and the 
multilevel covariate with four levels and slightly downward biased for the 
multilevel covariate with six levels, for the continuous covariates and the 
interaction terms as compared to the CART method (Figure 2). There seem to be 
similarities in the structure among all MI methods (i.e. all methods are downward 
biased) for binary covariate 𝑋𝑏32

, which was generated with higher order 

interactions. The H.DEF method tends to have smaller standard errors as 
compared to two relevant methods for all covariates, whereas the H.CART 
method tends to have similar standard errors as compared to CART for most of 
the cases (Figure 3). The estimated RMSES, ESEs and averages of standard 
errors for the H.CART method are smaller for all types of covariates except the 
multilevel covariate with many categories. H.CART shows similar ESEs and 
averages of standard errors and slightly higher RMSES for the multilevel covariate 
with more categories as compared to CART. The H.DEF method shows smaller 
ESEs and averages of standard errors for all types of covariates and slightly 
higher RMSEs for most of the covariates as compared to the other methods 
(Table 1). The H.DEF method led to more overall accuracy with smaller means for 
RMSEs over all beta coefficients as compared to CART (Table 2). A possible 
explanation for the efficiency gain with H.DEF is that it was able to make better 
use of the available information by accommodating nonlinearities among the 
predictors. For the most part, coverage rates for H.CART are in line with those 
from CART and produce almost identical results. In most cases, coverage 
probabilities for H.CART were 100%, which suggests that these confidence 
intervals may be too conservative. The simulated coverage rates of the 95% 
confidence intervals based on H.DEF are near to nominal 95% for most cases. 
Few of the incidences in H.DEF led to under-coverage. All but one of the 
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incidences, i.e. 𝑋𝑏32
in which coverages dip below 30% occur. This severe under-

coverage suggests that H.DEF (which uses the Bayesian approach for categorical 
and PMM as default for continuous covariates) might performing not well for 
continuous covariates but works well for categorical covariates. This might be one 
of the reasons that H.DEF gets biased results. Increasing M can lead to obtain 
coverage rates that are close to nominal in the case of under-coverages. 
Nevertheless, the H.DEF method led to coverage rates that are close to nominal 
over all beta coefficients as compared to CART (Table 2). 

7.  Imputation of MICS child data 

The data for MICS is collected at both family and person level and it allows 
the study of relationships between health indicators and other characteristics. In 
this study, we use the child data set from the MICS Punjab 2014 household 
survey. The MICS Punjab data for children contains more than two hundred 
indicators on a variety of a child’s conditions. For example, indicators on a child’s 
mental development (e.g. a child is able to pick up small object with 2 fingers, 
etc.), a child’s nutrition intake in diet (e.g. a child drank or ate vitamin or mineral 
supplements, etc.) and vaccinations (e.g. ever had vaccination card, etc.). The 
MICS data for children contains a complex data structure for categorical variables 
with multiple levels and large amounts of missingness, which can be problematic 
for MICE. It can be tedious for MICE to specify imputation models and interaction 
terms in the presence of large databases with hundreds of variables and 
multicollinearity (Van Buuren and Oudshoorn 1999).  It was not possible to have a 
proper comparison of the proposed and existing MI approaches in such case. 
Therefore, multiple categories for categorical variables were reduced by merging 
them, and a sub-sample of 52 variables, which contains information on child 
health, nutrition and development, is selected from MICS Punjab 2014 children 
data. Among these variables, 43 background variables are categorical with 
multiple categories and the remaining are continuous. Demographical variables 
like “district” and “area” are also included in the sub-sample. In this sub-sample, 5 
variables have between 6 and 21% of missing values, 17 variables have 48% of 
missing values, 27 variables have between 50% and 86% of missing values, and 
1 variable has more than 90% of missing values. Of all variables, only 3, i.e. “sex”, 
“wealth” and “area”, have complete records (see additional file). The variable 
“district” has 36 levels, hence keeping the analysis comparable and challenging at 
the same time. There are various reasons listed for item non response in the 
methodology of MICS i.e. nonresponse, don’t know and not reached, etc. Without 
distinguishing reasons for item non response, we assume that the items are MAR in 
the data under consideration. Similar to the simulation study, all of the variables 
from the sub-sample are included in the imputation model.  

After imputations, parameters of interest for the child health are estimated 
using linear models for continuous response (height for age percentiles NCHS). 
The response variable, “height for age percentiles NCHS”, is obtained by using a 
table of Z-scores (percentile = the area from infinity to Z). Based on the evidence 
from demographical and behavioural risk factors associated to height, two 
continuous covariates i.e. “age”, “polio_vacc.” and two categorical variables, i.e. 
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“grains_in_diet” (Yes/ No) and “eggs_in_diet” (Yes/ No) are selected as potential 
determinants in the analysis model. Since there are no true values to compare for 
in the real data example, we calculated complete case (CC) estimates for 
comparison purposes (Table 5). The R package “VIM” (Templ et al.  (2012)) is 
utilized for exploring data and the pattern of missing values. Figure 4 shows 
graphics of the incomplete predictors. Graphics for the remaining variables in the 
sub-sample are provided in an additional file. Similar to the simulation study 
ESEs, average point estimates and average standard across the 200 simulations 
are calculated for real data. Computational time and ESEs for MI methods are 
shown in Tables 3 and 4 respectively. Figures 5 and 6 display the average point 
estimates and average standard errors for the MI methods across the 200 
simulations. 

7.1. Results 

Figure 4.  Real data: Aggregateplot in R, graphics of incomplete predictors. For 
purposes of displaying the graphical depiction, only four variables with 
proportions of missing values ranges between 18-28 were selected 

 

Figure 5.  Real data: Boxplots for point estimates (𝑞
𝑀

) across 200 simulations by 

imputation methods under Missing at Random (MAR) and ten 
imputations  
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Figure 6.  Real data: Boxplots for standard errors (√𝑇𝑀  ) across 200 simulations 

by imputation methods under Missing at Random (MAR) and ten 
imputations. 

 
 

Table 3.  Real data: Time taken for various MI methods 

Method Default CART H..DEF H.CART 

Time No run 3.25d 22.78h. 21.21h 

Note: time = the time to complete 10 multiple imputation by variants of MI across 1000 
simulations, h = hours, d = days, and Not Run = the program not able to complete multiple 
imputation on this subset. The maximum number of iterations is set to 200.   

 

Table 4.  Real data: ESEs for various MI methods 

 

Variables CART H.DEF          H.CART 

age 

eggs_in_diet  

polio_vacc.   

grains_in_diet 

0.06 

0.21 

0.07 

0.17 

0.04 

0.22 

0.04 

0.16 

0.06 

0.20 

0.09 

0.21 

 
 
Empirical standard errors by imputation methods under Missing at Random 

(MAR) and ten imputations. Cases where both HMI methods result in minimum 
between imputation variances (ESEs) as compared to CART are highlighted in 
bold. 
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Table 5.  Real data: complete case (CC) estimates  

Variables est se 

age 3.542 0.899 

eggs_in_diet -9.866 1.305 

polio_vacc. -0.808 0.242 

grains_in_diet 0211 1,342 

 
The CC analysis uses only the complete cases (n = 4264), “est” and “se” 

denote the point estimates and standard errors of the coefficients of the linear 
model, respectively. 

Figure 4 displays graphics of incomplete predictors. The bar plot on the left 
side shows the proportions of missing values in the predictors. The continuous 
predictor “polio_vacc.” has the highest amount of missing values (i.e. about 80%) 
while the amount is rather small in the other three variables (i.e. less than 60% for 
two binary predictors and less than 40% for predictor “age”). An aggregation plot 
on the right side shows all existing combinations of missing (red) and imputed 
observed (blue) values. Additionally, the frequencies of different combinations are 
visualized by a small bar plot and by the number of their occurrences on the right 
side (Templ et al. (2012)). The aggregation plot reveals that missing values in the 
variable “polio_vacc.” are also missing in the two binary variables. We note that 
the standard errors for all of the coefficients are smaller compared to the 
(absolute) point estimates under all MI methods (see Figures 5-6). This happens 
most likely due to sampling variability in the multiple imputation inferences. The 
empirical example with real data indicated that the CART and HMI variants 
yielded differing point estimates. We noticed that point estimates in CART are 
nearer to the estimates in complete case analysis for most of the cases with 
larger standard errors as compared to hybrid methods (see Table 5, Figures 5-6).  
Figure 6 displays smaller standard errors for H.DEF as compared to CART. ESEs 
for HMI variants are also smaller as compared to CART for most of the cases 
(see Table 5), suggesting better performance over CART. Given the results 
produced by the MI methods, a look at the computation times in Table 3 may be 
useful for a further comparison. Almost 4 days were taken by CART to run on 
standard computers, whereas, surprisingly, this time was reduced to almost one 
day when HMI methods were applied. We also applied the proposed methods to 
the full MICS data set with hundreds of variables and categories with multiple 
levels. We found that the proposed methods have a good capacity to perform for 
the MICS data where the MICE methods simply fail.  

8.  Conclusion and remarks 

We acknowledge that results of MI can be biased even when complex 
multivariate data is MAR (White and Carlin, 2010). However, in this paper, we 
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assumed that the missing data mechanism is MAR. We applied our hybrid 
strategy to handle missing data in large scale survey data with complex 
dependence structures among categorical variables and a high percentage of 
missing information. Identification of complex dependence structures among 
mixed type covariates will be difficult for JM and FCS MI methods in high 
dimensions. We obtain promising results by performing an illustrative analysis. 
The results obtained from the simulation studies and a real data example confirm 
the potential of our proposed approach to handle missing data under MAR. 
Superiority of H.DEF was its efficiency relative to the other imputation inference 
methods. The H.DEF method outperformed the other methods with respect to 
RMSEs, ESEs and standard errors but its point estimates were downwardly 
biased for a few regression coefficients, which led to under-coverage of the 
confidence intervals. H.CART gives estimates with less bias but over-coverage of 
confidence intervals. There was no noticeable difference in coverage and 
standard errors between H.CAT and CART.  H.CART produces smaller RMSEs 
and ESEs for most parts and 3 times less computational cost as compared to 
MICE. A problem of the HMI approach is that it does not use the information 
available on the continuous variables for imputing the categorical variables. 
Further work is needed to use iterative procedures to develop strong relationships 
between the categorical and continuous variables. Currently, we are 
implementing solutions for this problem and we use the concept of categorizing 
continuous variables. We are working on the development of a new R package 
that will implement the proposed HMI approach with the hope that it will contribute 
in MI of large scale survey data. 
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LINEAR CHOLESKY DECOMPOSITION OF
COVARIANCE MATRICES IN MIXED MODELS WITH

CORRELATED RANDOM EFFECTS

Anasu Rabe1, D. K. Shangodoyin2, K.Thaga3

ABSTRACT

Modelling the covariance matrix in linear mixed models provides an additional ad-
vantage in making inference about subject-specific effects, particularly in the anal-
ysis of repeated measurement data, where time-ordering of the responses induces
significant correlation. Some difficulties encountered in these modelling procedures
include high dimensionality and statistical interpretability of parameters, positive def-
initeness constraint and violation of model assumptions. One key assumption in
linear mixed models is that random errors and random effects are independent,
and its violation leads to biased and inefficient parameter estimates. To minimize
these drawbacks, we developed a procedure that accounts for correlations induced
by violation of this key assumption. In recent literature, variants of Cholesky de-
composition were employed to circumvent the positive definiteness constraint, with
parsimony achieved by joint modelling of mean and covariance parameters using
covariates. In this article, we developed a linear Cholesky decomposition of the ran-
dom effects covariance matrix, providing a framework for inference that accounts for
correlations induced by covariate(s) shared by both fixed and random effects design
matrices, a circumstance leading to lack of independence between random errors
and random effects. The proposed decomposition is particularly useful in parameter
estimation using the maximum likelihood and restricted/residual maximum likelihood
procedures.

Key words: correlated random effects, covariance matrix, linear Cholesky decom-
position, linear mixed models.

1. Introduction

Linear mixed models are a class of models (Laird and Ware, 1982) that provide
parameter estimates (inference) for population (fixed effects) and subject-specific
(random effects) characteristics via separate covariance structures.
Let Yi = (yi1, . . . ,yini)

T be ni × 1 vector of responses measured on the ith subject
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(i = 1, . . . ,m) from a total of n = ∑
m
i=1 ni measurements. A linear mixed model (Laird

and Ware, 1982) for the ith subject is represented by:

Yi = Xiβ +Ziγi + εi (1.1)

where Xi is ni× p design matrix for the p×1 vector of fixed-effects regression coef-
ficients β , Zi is ni×q design matrix for the q×1 vector of random effects γi and εi is
ni×1 vector of error terms. For model (1.1), we assume that:

i. Error terms εi are independent within ith subject and are normally distributed
with zero mean and ni×ni covariance matrix Σi: E(εi) = 0 and εi ∼ N(0,Σi).

ii. The random effects γi are independent and normally distributed with mean
zero and qi×qi covariance matrix ∆i. X and Z share no covariate(s) so that γi

and εi are independent: E(γi) = 0, γi ∼ N(0,∆i) and Cov(γi,εi) = 0.

iii. The response variable yi is normally distributed with mean Xiβ and covariance
matrix Vi: yi ∼ N (Xiβ ,Vi), where Vi = Zi∆iZT

i +Σi.

In practice, assumptions on random effects are difficult to satisfy. For exam-
ple, non-normality of random effects has been proven in the literature by several
authors, with Lange and Ryan (1989) providing some concrete examples. Assump-
tion of independence between εi and γi may also not hold when research interest
require that X and Z have common covariate(s). For example (Gelfand et al., 1995),
in growth studies where individual profiles are centered about a population baseline
curve. In such cases, individual models incorporate the baseline population covari-
ate. Another example is the analysis of CD4 cell counts in HIV studies where all
subjects are HIV-positive at baseline, but not all were diagnosed for the disease.
Interest here is to develop a model that incorporates diagnosis as a baseline co-
variate and therefore should be incorporated in both X and Z. Also, in hierarchical
mixed effects models (Pinheiro and Bates, 2000), the model structure is conditional
on the random effects, making γ and εi inherently dependent.
Several approaches have been proposed in the literature to address these draw-
backs, and procedures based on Cholesky decomposition of the random effects
covariance matrix ∆i provide additional advantage of guaranteeing the positive def-
initeness of the resulting factors, circumventing constraints of high dimensionality
and statistical interpret-ability of the resulting parameters. We review some of these
Cholesky-based procedures in the following section.

2. Variants of Cholesky decomposition

The standard Cholesky decomposition of a real, symmetric, positive definite matrix
Σp×p is

Σ =UTU (2.1)
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where U is an upper triangular with positive diagonal elements. The main advan-
tage of this decomposition when used in parameter estimation procedures, such
as maximum likelihood (ML) and residual/restricted maximum likelihood (REML), is
that it provides an unconstrained parameterization of the parameters in Σ, circum-
venting the positive definiteness constraint. However, Pinheiro and Bates (1996)
showed that the Cholesky factors U are not unique and the unconstrained p(p+1)

2
parameters lack a meaningful statistical interpretation with respect to the entries in
Σ. To overcome these drawbacks, several classical and Bayesian approaches have
been proposed in the literature.
Under the classical approach, Pourahmadi (1999) proposed the modified Cholesky
decomposition (MCD) for modelling parameters of the precision matrix and devel-
oped a ML procedure (Pourahmadi, 2000) for normal generalized linear models:

Σ
−1 = LT D−1L (2.2)

where entries in the unit lower triangular Cholesky factor L are interpreted as nega-
tives of autoregressive coefficients when a response variable yt is regressed on its
predecessors yt−1, . . . ,y1 and entries on the diagonal factor D as logarithms of their
innovations.
However, despite the good performance of the proposed MCD, the procedure left a
number of questions unanswered:
First, the proposed ML estimation procedure (and its restricted extensions) works
well only when measurement times are identical across subjects, and hence may
not be applicable to unbalanced data sets, particularly since it utilizes the sample
covariance matrix S2 as an initial value for Σ, which does not exist in unbalanced
data settings (Pan and MacKenzie, 2006). In such cases, either the ML procedure
is enhanced (Holan and Spinka, 2007) or some numerical optimization approach is
adopted (Zimmermann et al., 1998). Second, the use of a saturated mean structure
may be unnecessary (Pan and MacKenzie, 2003), except when the mean model is
incorporated in searching the joint mean-covariance parameter space. Third, the
regressogram, as proposed and utilized in model selection for the dependence and
innovation variance, failed to capture the joint mean-covariance structure since the
mean model was not included. However, Garcia et al. (2012) showed that as a
data-driven graphical tool for model selection, they are powerful graphical tools in
joint mean-covariance model selection for incomplete longitudinal data. Fourth,
when subject-specific characterization is the focus of research interest, a linear
mixed modelling (LMM) framework may be more flexible than a generalized linear
modeling (GLM) framework.
These questions raised a number of issues and stimulated keen interest in mod-
eling covariance structures under different frameworks and perspectives. Pan and
Mackenzie (2003) observed that parameter estimates based on MCD are not op-
timal, and to address the first question, they proposed extending the procedure
to unbalanced data with optimal parameter estimates achieved via joint search of
the mean-covariance space. Zhang and Leng (2012) proposed a moving average
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Cholesky decomposition (MACD) for Σ as the inverse of precision matrix:

Σ = L−1DL−T (2.3)

where the entries in L−1 have a moving average (MA) interpretation. It has the
same advantages and limitations as MCD and only differs in its MA interpretation.
Li and Pourahmadi (2013) utilized MCD in developing a procedure that circumvent
the effect of violating normality assumption on random effects in linear mixed mod-
els. However, their procedure was based on the assumption that design matrices
X and Z share no common covariates and may result into inefficient parameters
when such assumptions are violated. More recently, Lee et al. (2017) proposed an
autoregressive moving average Cholesky decomposition (ARMACD) by combining
the modified Cholesky decomposition and moving average Cholesky decomposi-
tion to address high-dimensionality and positive definiteness constraints:

ΛiΣiΛ
T
i = LiDiLi

i (2.4)

where Λi is unit lower triangular matrix with generalized autoregressive parame-
ters (GARPs) −φi,t j at its (t, j)th position, Li is unit lower triangular with general-
ized moving average parameters (GMAPs) ιi,t j at its (t, j)th position ( j < t) and
Di = diag(σ2

i1, . . . ,σ
2
ini
) is diagonal with innovation variances (IV) σ2

i j. This decompo-
sition subsumes a wide variety of covariance structures which are more flexible and
with better forecasting performance than separate higher order AR or MA models.
The combination of MCD and MACD creates a unified framework with models that
allow nonstationarity and heteroscedasticity in parameter estimates.
Under a Bayesian framework, Daniels and Zhao (2003) proposed modelling the
random effects covariance matrix ∆i for the ith subject (i = 1, . . . ,m) using the modi-
fied Cholesky decomposition

Λi∆iΛ
T
i = Di (2.5)

where Di = diag(σ2
i1, . . . ,σ

2
iq) is diagonal with innovation variances (IV) σ2

i and Λi is
unit lower triangular with GARPs −φi,t j as its (t, j)th entry. This variant also provides
the advantages of overcoming the positive definite constraint and statistical inter-
pretation of parameters. By adopting a Bayesian approach, they gained additional
flexibility in obtaining the sampling distribution of the random effects using a simple
Gibbs sampler, which sample from the posterior distribution of parameters. To in-
corporate heterogeneity in ∆i, the random effects were allowed to depend only on
subject-specific covariates and parsimony was achieved by regressing the parame-
ters using these covariates. However, when random effects differ on different linear
combinations of these covariates, separate covariance structures need to be fit for
each combination and misspecification of a structure can lead to inefficient param-
eter estimates. Another drawback is their assumption of statistical independence
of the repeated measurement given the random effects. This assumption restricted
the application of their approach in longitudinal studies. Chen and Dunson (2003)
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proposed an alternative Cholesky decomposition for selecting the random effects
components. Their approach factored the random effects covariance matrix ∆ into

∆ = DΛΛ
T D (2.6)

where D is a diagonal matrix with elements proportional to standard deviation of
the random effects and Λ is a unit lower triangular matrix with off-diagonal ele-
ments describing correlations among the random effects. With separate factors for
variance and correlation, their approach is computationally more tractable and pro-
vides some flexibility in selecting the random effects components. However, their
approach is based on the assumption that components of the random errors and
random effects are mutually independent. Gaskins and Daniels (2013) extended
the Cholesky-based joint mean-covariance modelling to longitudinal data from sev-
eral groups of subjects. They proposed a data-driven nonparametric method that si-
multaneously estimates the covariance matrix from each group by developing non-
parametric priors using the matrix stick-breaking process. More recently, Han and
Lee (2016) proposed a variant ARMACD decomposition:

ΛiΣiΛi =Ci∆bCT
i +LiDiLT

i (2.7)

where Λi, Li and Di were as described above, ∆b is the random effects covariance
matrix and Ci = (ci1, . . . ,cini)

T is the random effects design matrix. This approach
has all the advantages of ARMACD as proposed by Lee et al. (2017), but model
parameters are obtained conditional on random effects in the linear mixed model.
By allowing X and Z to have common covariate(s), Gelfand et al. (1995) proposed a
modelling procedure in which parameters are hierarchically centred to account for
between-level correlations, and to ensure model identification. However, the ran-
dom effects covariance matrix of their proposed procedure is positive semi-definite,
leading to poor convergence properties in some parameter estimates.
To account for heteroscedasticity in the random errors εi via modelling the variance
function, Pinheiro and Bates (2000) proposed a variant Cholesky decomposition of
the random errors covariance matrix Σi as

Σi = DiCiDi (2.8)

where Di is diagonal, describing the variance of the random errors and Ci is trian-
gular with all diagonal elements positive, describing the correlation of the random
errors. The variance function model was proposed, conditional on the random ef-
fects γi, as a function of the conditional population mean response µi j = E(yi|γi).
Now, with these conditional dependencies, the assumption of independence be-
tween εi and γi no longer holds and Cov(εi,γi) 6= 0. To circumvent the consequences
of this violation, they allow common covariates between X and Z, approximating µi j

by the best linear unbiased predictor (BLUP)

µ̂i j = xT
i jβ + zT

i jγi (2.9)
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where xi j and zi j denote the jth rows of Xi and Zi, respectively.
In this article, we propose a more efficient approach to address the violation of
this key assumption. We improve efficiency in inference and gain more insight
into model bahaviour by modelling the correlation structure between εi and γi when
Cov(εi,γi) 6= 0, and to achieve this, we propose a linear Cholesky decomposition of
the random effects covariance matrix ∆i . Our approach is based on linear transfor-
mation of inner products of functions of Cholesky factors when subjected to left-right
or lu decomposition. We next discuss this transformation.

3. Linear Cholesky decomposition

The proposed linear decomposition is based on upper triangular Cholesky factor
U. Let ∆ =UTU be q×q standard Cholesky decomposition with U upper triangular.
We subject U to lu factorization, obtaining:

∆ = [lu(U)]T lu(U) = (Φ+Ψ)T (Φ+Ψ) (3.1)

∆−1 =
[
lu
(
U−1

)]T [lu(U−1
)]

=
(
ρ +Ψ−1

)T (
ρ +Ψ−1

)
(3.2)

where Φ(−φi,k j) and ρ(θi,k j) are upper triangular with zeros on the diagonal,
parameters −φi,k j and θi,k j in (k, j)th positions, respectively, and innovation Ψ =

diag(ψ11, . . . ,ψqq) with Ψ−1 = diag(ψ−1
11 , . . . ,ψ−1

qq ) as its inverse.
Expanding (3.1) and (3.2), we obtain

∆ = (Φ+Ψ)T (Φ+Ψ) = Φ
T

Φ+Φ
T

Ψ+Ψ
T

Φ+Ψ
T

Ψ (3.3)

∆
−1 =

(
ρ +Ψ

−1)T (
ρ +Ψ

−1)= ρ
T

ρ +ρ
T

Ψ
−1 +Ψ

−T
ρ +Ψ

−T
Ψ
−1 (3.4)

Definition 1 Let ∆ be represented by (3.3). Linear Cholesky decomposition is de-
fined by

∆ = ΦT Φ+ρT ρ +ΨT Ψ (3.5)

= ∆AR +∆MA +∆IV (3.6)

with Cholesky factors Φ, ρ and Ψ, respectively, describing the correlation struc-
ture in γi, the correlation structure between εi and γi, and the innovation of γi.

Also, for the precision matrix we have:

Definition 2 Let ∆−1 be represented by (3.4). Linear Cholesky decomposition is
defined by

∆
−1 = ρT ρ +ΦT Φ+[Ψ]−T

Ψ−1 (3.7)

= ∆MA +∆AR +∆
−1
IV (3.8)

The following theorem provides the basis for linear Cholesky decomposition:



STATISTICS IN TRANSITION new series, December 2019 65

Theorem 1 Linear Cholesky decomposition of real, symmetric positive definite ∆ is

∆(Θ) = ΦT Φ+ρT ρ +ΨT Ψ

= ∆AR +∆MA +∆IV (3.9)

where Θ = (−φi, j,θi, j,ψii) with −φi j = corr(γi,γ j) for i 6= j, θi j = corr(εik,γ jk) and
ψii = log(diag [∆ii]).

Proof 1 Let Σp×p = UTU be the standard Cholesky decomposition, then lu de-
composition of upper triangular U results into ul (upper-lower) factors (see Stewart
(1998), page 183):

[lu(U)]T lu(U) = (U∗Ψ)T (U∗Ψ) (3.10)

= ΨTU∗TU∗Ψ (3.11)

with U∗ unit upper triangular and Ψ lower triangular (diagonal) matrices.
Let ’b’ be p×1 suitably chosen vector such that columns of U∗ can be sequentially
extracted via repeated multiplication, forming a Krylov sequence b,U∗b,U∗2b, . . . ,U∗(p−1)b.
Define as Krylov matrix

K =
[
b,U∗b,U∗2b, . . . ,U∗(p−1)b

]
= 〈b,U∗b〉 (3.12)

where 〈., .〉 is an inner product, with the columns forming an ordered basis whose
linear combinations span the Krylov subspaces K1, . . . ,Kp−1 = K(p−1) ⊆ Fp, where
Fp is p−dimensional vector field. lu decomposition described by (3.11) is nonlinear
in the factors. For a linear decomposition, we have from (3.3)

∆ = Φ
T

Φ+Φ
T

Ψ+Ψ
T

Φ︸ ︷︷ ︸+Ψ
T

Ψ

where Φ is strictly upper triangular with dependence parameters and Ψ is diagonal
with variance parameters. The under-braced equation is a function of inner prod-
ucts of the respective Cholesky factors. There are several, well-established matrix
linear transformations (such as Lyapunov stability transformation, see Carlson and
Datta (1979)) that can be used in obtaining meaningful interpretation of this function
of inner products.
If we let each product describe the rate of change in value of the correlation param-
eters θ between εi and γi (through shared covariate(s)) as

∂ f [Φ(φ)] =
[
ΦT (θ)Ψ(θ)

]
∂θ (3.13)

∂ f [Ψ(ψ)] =
[
ΨT (θ)Φ(θ)

]
∂θ (3.14)

then, we obtain the correlation between εi and γi (through shared covariates, with
respect to parameters in Φ) using a direct differentiation result by De Hoog et al.
(2011), as
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[
Φ

T (θ)Ψ(θ)+Ψ
T (θ)Φ(θ)

]
∂θ = ∂ f

[
Ψ(θ)Φ(θ)ΨT (θ)

]
= ΦT (θ)Ψ(θ)Φ(θ)

= 〈Φ,ΨΦ〉 (3.15)

The columns of Φ(θ) =
[
0,U∗b,U∗2b, . . . ,U∗(n−1)b

]
form linear combinations that

span the same Krylov subspaces, but Φ(θ) has the first column as zero vector,
with zeros on its diagonal while U∗

(
u∗i j

)
is a unit triangular with the first column

as a unit vector, having the first entry 1. However, congruence of 〈b,U∗b〉 to
〈Φ(θ),Ψ(θ)Φ(θ)〉 implies congruence of U∗(u∗i j) to Φ(θ) and can be exploited in
establishing an equivalence relation between them by changing the basis of U∗:
Define a new basis Z = (z1, . . . ,zp) ∈ K(p−1) for the column space of U∗ and let
Z = SU∗ where S is invertible, then

f (Z) = ZT
ΨZ = 〈Z,ΨZ〉= 〈SU∗,ΨSU∗〉

Now, 〈SU∗,ΨSU∗〉 is congruent to 〈Φ(θ),Ψ(θ)Φ(θ)〉 if there exists a non-singular
matrix Q such that

QΦ(θ) = SU∗Q ⇒ Φ(θ) = Q−1SU∗Q

QΨ(θ)Φ(θ) = Ψ(θ)SU∗Q ⇒ Ψ(θ)Φ(θ) = QT
Ψ(θ)SU∗Q (3.16)

Then, we have

Φ
T (θ)Ψ(θ)Φ(θ) =

(
Q−1SU∗Q

)T (QT Ψ(θ)SU∗Q
)

= QTU∗T ST Q−T QT Ψ(θ)SU∗Q

= (U∗Q)T ST Ψ(θ)S (U∗Q)

= (U∗Q)T I (U∗Q)

= (U∗Q)T (U∗Q) (3.17)

with invertible S diagonalizing Ψ(θ) to identity: ST Ψ(θ)S −→ I. The matrix Q =

[q1, . . . ,qp] is obtained using the Lanczos algorithm. The main advantage of the lu
factorization is that columns of U can be reconstructed using the non-zero rows
of U∗ as coefficients and we exploit this feature in estimating MA parameters by
reducing an upper Hessenberg matrix H to tridiagonal via column operations:
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U∗Q = [U∗q1, . . . ,U∗qp]

= [q1, . . . ,qp]



h11 h12 h13 . . . . . . h1p

h21 h22 h23 . . . . . . h2p

0 h32 h33 . . . . . . h3p

. . . 0 h43 . . . . . . . . .

. . . . . . . . . . . . . . . h(p−1)p
0 0 . . . . . . h(p−1)p hpp


= QH = ρ(θ) (3.18)

where ρ(θ) is tridiagonal. With U∗ being symmetric,

H = Q−1U∗Q

is also symmetric and tridiagonal. Note that Q need not be orthogonal. Now, using
the above relations, we have

Φ
T (θ)Ψ(θ)Φ(θ) = (U∗Q)T (U∗Q)

= ρT (θ)ρ(θ) (3.19)

To ensure that our approach also provides the basic advantage offered by Cholesky
decompositions, we show that ∆i is positive definite:

Theorem 2 Let ∆i be represented by the linear Cholesky decomposition (3.5). Then,
∆i is positive definite.

Proof 2 By definition (3.5), ∆i = ΦT Φ+ ρT ρ +ΨT Ψ. Then, for any conformable
nonzero vector x, we have

xT
∆x = xT

(
ΦT Φ+ρT ρ +ΨT Ψ

)
x

= xT ΦT Φx+ xT ρT ρx+ xT ΨT Ψx

= (Φx)T
Φx+(ρx)T

ρx+(Ψx)T
Ψx

= Y T
1 Y1 +Y T

2 Y2 +Y T
3 Y3

= ∑i y2
1i +∑ j y2

2 j +∑k y2
3k > 0 (3.20)

where Y1 = Φx,Y2 = ρx,and Y3 = Ψx. Therefore, xT ∆x > 0 and ∆ is positive definite.

4. Conclusions

We propose a linear Cholesky decomposition for estimating correlation parameters
between random errors εi and random effects γi in linear mixed models when the
independence assumption between the two does not hold. Our approach can be
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regarded as an extension of the Pinheiro and Bates (2000) result, in which their
Cholesky decomposition of Σi has two factors, while our decomposition of ∆i has
three factors. Application of this decomposition to parameter estimation using the
maximum likelihood and restricted/residual maximum likelihood procedures is the
topic of our ongoing research.
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MODELLING LANGUAGE EXTINCTION USING 
SUSCEPTIBLE-INFECTIOUS-REMOVED (SIR) MODEL 
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ABSTRACT 

The study presents a stochastic epidemic model applied to the model of 
indigenous language extinction. The Susceptible-Infectious-Removed (SIR) 
categorization of an endemic disease has been reformulated to capture the 
dynamics of indigenous language decline, based on the assumption of non-
homogeneous mixing. The time in which an indigenous language is expected to 
be extinct was derived using a modified SIR model with the population segmented 
into several sub-communities of small sizes representing family units. The data 
obtained from the 2016 indigenous language survey conducted in several parts of 
Nigeria and from the 2013 Nigeria Demographic Health Survey (NDHS) were used 
to estimate the key parameters of the model for Nigeria’s several indigenous 
languages. The parameters of interest included the basic reproduction number, 
the threshold of endemicity, and the time in which a language is expected to be 
extinct, starting from the endemic level. On the basis of the time in which 
a language is expected to be extinct, several of the surveyed languages appeared 
to be in a precarious condition, while others seemed virile, thanks to a high 
language transfer quotient within families. 

Key words: language extinction, stochastic epidemic model; non-homogeneous 

mixing, quasi-stationary distribution, time in which a language is expected to be 
extinct. 

1.  Introduction 

The world today is littered with thousands of languages and several hundreds 
have been documented to have become extinct (Crystal, 2000). Of the known 
7,102 living languages, 22% of them have been categorized as ‘in trouble’, 13% 
dying, while there is a loss rate of about 6 languages per year (Lewis et al., 2015). 

It is claimed that more than 400 Nigerian languages are endangered and 
there is a declining level of transfer of indigenous language ability to the younger 
generation (Ohiri-Aniche, 2014). It was therefore projected that many Nigerian 
languages will become extinct by 2084 (Ohiri-Aniche, 2014). 

A lot of languages globally are tethering on the brink of extinction (Nuwer, 
2014). Over the past century alone, it is estimated that around 400 languages - 
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about one every three months - have gone extinct, and it is estimated that 50% of 
the world’s remaining 6,500 languages will be gone by the end of the 21st century 
(Nuwer, 2014). 

Languages usually reach the point of crisis after being displaced by a socially, 
politically and economically dominant one. Sometimes, especially in immigrant 
communities, parents will decide not to teach their children their heritage 
language, perceiving it as a potential hindrance to their success in life (Nuwer, 
2014). 

The problem of declining use of indigenous languages at the expense of 
global languages like English and French has become much pronounced in 
previously colonized countries in the developing world. 

While there is a common view that many indigenous languages are dying, the 
depth of the problem is yet to be sufficiently captured, as there has been minimal 
use of scientific approaches to reflect the gravity of the problem especially among 
indigenous languages of sub-Saharan Africa. Thus, the desire to provide an 
analytical model that sufficiently captures the language decline in a society over 
an extended period of time is the main motivation for this research. 

A research that motivated the pursuit of language modelling using epidemic 
models is the work of Daley and Kendall (1964) which modelled the spread of 
rumours using the basic SIR epidemic model. 

The main focus in the adaptation of stochastic epidemic models to study the 
decline of indigenous languages is to derive conditions under which the 
indigenous language can be propagated without the threat of extinction. In other 
words, it is of interest to estimate thresholds above which such languages will 
continue to survive with minimal fluctuations around the threshold. 

The SIR model was originally used to model the dynamics of an epidemic 
within a population consisting of susceptible individuals (S), infectious individuals 
(I) and those who have recovered or are removed (R) and could no longer 
contribute to the spread of the epidemic. There are numerous versions of the SIR 
epidemic model to capture different disease dynamics for both closed populations 
and populations that incorporate demographic turnover. 

Under the context of indigenous language decline in a community, using the 
principle of the SIR epidemic model, the susceptible group is viewed as all 
children born into the community; the infectious group corresponds to children 
who later acquire indigenous language ability; while the removed group contains 
those who exit the community either through death or migration. 

There are several useful similarities between the study of epidemics and 
language decline, with seemingly opposite objectives. While under the epidemic 
context, the goal of modelling is to ensure the termination of the spread of the 
disease in the population, in the context of language modelling, the goal is to 
ensure continuous propagation of the language to enhance its survival in the 
population. It is noted that this is a novel application of stochastic epidemic 
models to capture indigenous language dynamics. A search of the literature 
reveals that there are seemingly no papers applying epidemic models in the area 
of indigenous language extinction. A few of the relevant researches germane to 
this study are now presented. 

Trapman and Bootsma (2009) established a relation between the spread of 
infectious diseases and the dynamics of the M/G/1 queueing system with 
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processor sharing. They showed that the number of infectious individuals in a 
standard SIR epidemic model at the moment of first detection of the epidemic was 
geometrically distributed. They derived the distribution of the number of infectious 
individuals at the moment of first detection in a broad class of epidemics in large 
populations. 

An inherent relationship exists between infectious diseases and human 
populations, as reflected by Dobson and Carper (1996). The relationship can be 
extended to that of languages and human populations.  

Allen and Burgin (2000) compared the dynamics of some deterministic and 
stochastic discrete-time epidemic models with fixed and varying population. In 
some cases, the time to extinction was very long, and in such cases, if the 
probability distribution is conditioned on non-extinction, then for values of the 
basic reproduction number 𝑅0 > 1, there exists a quasi-stationary distribution 
whose mean agrees with the deterministic endemic equilibrium. The expected 
duration of the epidemic was also investigated numerically. 

Ball and Lyne (2000) analyzed the spread of an SIR epidemic in a closed, 
finite population using a household model. Both local and global infection was 
possible within the population. We are interested in such household models that 
could be modified to fit the goals of language modelling. 

Nasell (2002) studied several stochastic models with demography for various 
endemic infections. Approximations of the quasi-stationary distributions and 
expected time to extinction were derived for the SI, SIS, SIR and SIRS models. 
The approximations were valid for sufficiently large population sizes, and in 
comparison with corresponding deterministic models, the stochastic models 
provided realistic parameter estimates. 

Nasell (2005) examined quasi-stationarity and time to extinction for the classic 
endemic model, with focus restricted to the transition region in the parameter 
space where the quasi-stationary distribution is non-normal. An approximation of 
the marginal distribution of the infected individuals in quasi-stationarity was 
proposed. Simulation results showed that the analytical approximations 
performed reasonably. 

Verdasca et. al (2005) studied the effect of spatial correlations on the spread 
of infectious diseases using a stochastic SIR model on complex networks. Heavy 
stochastic fluctuations tend to limit the utility of deterministic models under such 
circumstances. 

Lindholm and Britton (2007) studied an SIR model with the population sub-
divided into k sub-communities of equal sizes n, assumed large. Lindholm and 
Britton (2007) model provides a useful platform for the adaptation of epidemic 
modelling to language extinction. The general SIR model with homogeneous 
mixing is called SIR-HM and the SIR model with heterogeneous mixing in which 
the population is divided into sub-communities is called SIR-SC (Lindholm and 
Britton, 2007). 

Burr and Chowell (2008) analyzed SEIR-type models under the assumption of 
non-homogeneous mixing. Their goal was to evaluate possible retrospective 
signatures of non-homogeneous mixing behaviour. From simulated outbreaks, it 
was concluded that such signatures can detect non-SEIR-type behaviour in some 
of the social structures considered. 



74                                      N. A. Ikoba, E. T. Jolayemi: Modelling language extinction… 

 

 

Schwartz et. al (2009) investigated random extinction processes in a class of 
epidemic models, examining the rate of disease extinction as a function of 
disease spread. It was shown that the effective entropic barrier for extinction in a 
SIS model displays scaling with the distance to the bifurcation point, with an 
unusual critical component. Analytical results were compared with numerical 
simulations and were found to be good. 

Billings et. al (2013) considered the effect of randomly distributed intervention 
as disease control on large finite populations, and showed how intervention 
control modulates the expected time to extinction, which in turn was a function of 
population size and rate of infection spread. 

In section two, the relevant SIR model is conceptualized to capture the 
language decline dynamics. The model analysis is also presented, and estimates 
of the quasi-stationary distribution, threshold of endemicity and expected time to 
extinction are obtained. The model parameter estimation from survey and 
historical data is also presented in section 3. The results from an indigenous 
language survey carried out in some parts of Nigeria in order to determine the 
extinction status of some Nigerian languages are presented and discussed in 
section 3. Finally, our conclusions are presented in section 4. 

2.  SIR model with demography for language extinction    

The main interest motivating the adaptation of the relevant SIR model to 
study indigenous language extinction is the very close relationship between 
epidemics and languages with regards to extinction. When demographic turnover 
and heterogeneities in the population are incorporated into SIR models for 
endemic diseases with infectious periods that are of the same order as the 
lifetime distribution of individuals, it is seen that such scenario will sufficiently 
capture the indigenous language decline dynamics in a population. 

2.1.  Description of the SIR model with demography and heterogeneous 
 mixing 

One of the fundamental assumptions of the standard SIR epidemic model is 

that the population is a closed one, that is, there is no demographic turnover 

(births, deaths, migrations) in the population. For the SIR model with 

demography, this assumption is relaxed in that there can be births of susceptible 

individuals into the population and also deaths or migration out of the population. 

This relaxed assumption therefore introduces population dynamics as 

a component of the evolution of the epidemic. 

The SIR model with demography provides a useful adaptation of endemic 

diseases modelling to capture the decline of languages with some modifications. 

Andersson and Britton (2000) provided an excellent description of the SIR model 

with demography, stressing its appropriateness in modelling endemic diseases, 

which have a long infectious period in relation to the lifetime of the individual. 

They noted that when modelling the spread of an endemic disease in a very large 

population, demographic turnover cannot be ignored. A disease is called endemic 

if it is able to persist in a population for a long time, without the need of 
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introducing new infectious individuals from some external population 

(Lindholm, 2007). When the susceptible population in a large community is 

augmented fast enough through births and/ or migrations, the epidemic tends to 

persist for a very long time even without the introduction of new infectious 

individuals into the population. 

For the language scenario, the assumption is imposed that the infectious 

period and the residual lifetime of the individual coincide. In fact, the overall 

lifetime of an individual is the sum of the language acquisition (latency) period and 

the infectious period. The system is viewed at specified epochs. 

The focus in the adaptation of stochastic epidemic models to study the decline 

of indigenous languages is to derive conditions under which the indigenous 

language can be propagated without the threat of extinction. In other words, 

interest is centred in achieving those thresholds above which such languages will 

continue to survive with minimal fluctuations around the threshold. 

According to Lindholm and Britton (2007), for diseases in which the infectious 

period is of the same order with the lifetime distribution, one can assume that 

when an individual recovers from the infection, this individual will likely be 

removed due to death within a relatively short time period. This is a fundamental 

backbone of the language adaptation of stochastic epidemic models, as it fairly 

approximates the scenario in the language setting, where it is assumed that the 

infectious period and the residual lifetime of the individual are identically 

distributed. 

The relevant SIR model with demography is now conceptualized in the 

indigenous language extinction approach.  

The population in the community contains k families labelled 1,2,...,k. Let 𝑛𝑖 
be the size of the 𝑖𝑡ℎ family, then the size of the entire population is 

𝑁 =∑𝑛𝑖

𝑘

𝑖=1

 

Individuals are born into the population at a constant rate 𝜇𝑘 and each of 

them is assumed to have an exponentially distributed lifetime with intensity 𝜃. 

Initially, it is assumed that there are zero susceptible and k indigenous 

language-speaking individuals in the population, denoting the initial language-

speaking population in the community before the advent of external influences 

like colonization. A given indigenous language speaker stays ‘infectious’ for 

a time period that is exponentially distributed with intensity 𝜈 (unless he dies of 

other causes before the end of that period). During that time, the infective in the 

𝑗𝑡ℎ family makes contact with children in his family at rate 𝛽/𝑛𝑗. With probability p, 

a contacted child imbibes the language.  

All random variables and counting processes (which are Poisson processes 

due to the exponential lifetimes assumption) are assumed to be mutually 

independent. Some of the relevant variables are next defined: 

X(t)= Number of susceptibles at time t; Y(t)= Number of language speakers at 

time t.  
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{𝑋(𝑡), 𝑌(𝑡), 𝑡 ≥  0} is a Markov process with transition rates: 

{
 
 

 
 
𝐹𝑟𝑜𝑚      
(𝑠𝑗 , 𝑖𝑗)

(𝑠𝑗 , 𝑖𝑗)

(𝑠𝑗 , 𝑖𝑗)

(𝑠𝑗 , 𝑖𝑗)

        𝑡𝑜         
(𝑠𝑗 + 1, 𝑖𝑗)

(𝑠𝑗 − 1, 𝑖𝑗)

(𝑠𝑗 − 1, 𝑖𝑗 + 1)        

(𝑠𝑗 , 𝑖𝑗 − 1)

       𝑎𝑡 𝑟𝑎𝑡𝑒
𝜇𝑛𝑗
𝜃𝑠𝑗

(𝛽/𝑛(1 + 𝜀(𝑘 − 1)))𝑠𝑗(𝑖𝑗 + 𝜀∑ 𝑖𝑢
𝑢≠𝑗

)

(𝜃 + 𝜈)𝑖𝑗

                 (2.1) 

We are mainly interested in the susceptible (S) and language-speaking (I) 
population, as the recovered/ removed population is assumed to have no further 
influence on the indigenous language dynamics. 

Non-homogeneous mixing models such as those for outbreaks in social 
networks are often believed to provide better predictions of the benefits of the 
various mitigation strategies such as isolation or vaccination (Burr and Chowell, 
2008). The homogeneous mixing assumption is often an unrealistic one, but due 
to the tractability of their analysis, such models provide useful insights on the 
disease dynamics. Social structure is a type of non-homogeneous mixing, such 
as most individuals having preferential contact with work or family members 
compared to the general population.  

The application of the SIR model with demography and non-homogeneous 
mixing to the language scenario imply that an infectious individual can mainly 
infect his offspring. There is a sort of family-based transmission of language 
ability from parent to offspring. The dynamics of the spread of the language 
becomes more intricate with the assumption of non-homogeneous mixing. If the 
population is divided into families, some families may not have any indigenous 
language speaker (language-free), while most others will contain a mixture of 
language speakers and non-speakers. As the population evolves in time, the 
tendency is to have an increasing number of non-language speakers, mainly the 
young ones born into the population but unable to imbibe their indigenous 
language. 

It is of interest to study situations where k is large in relation to the 𝑛𝑗′𝑠. This 

appropriately captures the scenario in communities where there are smaller family 
sizes in relation to the number of families in the community. It is also assumed 
that the contact rates within families are the same. 

Define the parameter 
𝜀 = proportion of an individual's contacts that are with other families.  
𝜀 = 0 implies that the families are isolated and there is no transmission 

between families. 𝜀 = 1 implies a single large community in which there is 
interaction among individuals in the population irrespective of their family. 

The overall infectious pressure in the entire population is kept constant 
regardless of the value of 𝜀.  

The standard SIR model assumes homogeneous mixing in the population, 
therefore results from the analysis of the standard SIR model are not applicable 
when the assumption of homogeneous mixing is relaxed. An appropriate analysis 
of the SIR model with the population divided into sub-communities has been 
given by Lindholm and Britton (2007). For the case with sub-communities, an 

infected individual in the 𝑗𝑡ℎ family makes contacts with any given individual within 
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its own family at rate 𝛽′/𝑛𝑗  and at rate 𝜀𝛽′/𝑛 with a given individual in any of the 

k-1 surrounding sub-communities, where n is taken as the mean family size in the 
population. 

Drawing from the principles of Lindholm and Britton (2007), the probability that 

a contact is within the 𝑗𝑡ℎ family is 

Pr(𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑜𝑛𝑡𝑎𝑐𝑡) =
1

1 + 𝜀(𝑘 − 1)
 

and the basic reproduction number, 𝑅0 is given as 

𝑅0 =
1

(𝜃 + 𝜈)
(
𝑛𝛽′

𝑛
+
(𝑘 − 1)𝑛𝛽′

𝑛
) =  

𝛽′

(𝜃 + 𝜈)
(1 + 𝜀(𝑘 − 1))              (2.2) 

Define 𝛼 = (𝜃 + 𝜈)/𝜃 as the ratio of mean lifetime to mean duration of 

language ability and 𝛽 = 𝛽′(1 + 𝜀(𝑘 − 1)), then the basic reproduction number 
can be expressed as 

                                     𝑅0 =
𝛽

𝜃𝛼
                                                                      (2.3)  

which is of the same form as the SIR model with homogeneous mixing. 
It is noted that the basic reproduction number, 𝑅0 is an increasing function of 

𝜀. In fact, it can be seen from equation (2.2) that 𝑅0(1) = 𝑘𝑅0(0) and all other 
values of  𝑅0(𝜀) are bounded in the interval (𝑅0(0), 𝑅0(1)). Hence, as the value of 

𝜀 increases, the basic reproduction number also increases, with the additional 

property that 𝑅0(1) is an integer multiple of 𝑅0(0). 

2.2.  The quasi-stationary distribution 

The quasi-stationary distribution is important when modelling endemic 
diseases, since interest is on the behaviour of the epidemic until it goes extinct. 
Similar reasoning also show that the quasi-stationary distribution in the language 
context is also of relevance, as a language that has progressed to the stage of 
quasi-stationarity has become endangered and is most likely to become extinct in 
the absence of any external revitalization measures. The quasi-stationary 
distribution of the population is defined as the conditional distribution that the 
process has not been absorbed after a long period of time. The endemic level can 
be thought of as the mean of this distribution, which the process fluctuates around 
(Lindholm and Britton, 2007). 

Let 𝑄 = {𝑞𝑥,𝑦} denote the quasi-stationary distribution. 

𝑞𝑥,𝑦 = lim
𝑡→∞

𝑃𝑟{𝑋(𝑡) = 𝑥, 𝑌(𝑡) = 𝑦|𝑌(𝑡) > 0} 

If in addition, the infectious period is exponentially distributed, then by reason 
of the memoryless property of the exponential distribution,  

𝑃𝑟(𝑇𝑄 > 𝑡 + 𝑠|𝑇𝑄 > 𝑡, (𝑋(0), 𝑌(0)) ∼  𝑄) = 𝑃𝑟(𝑇𝑄 > 𝑠|(𝑋(0), 𝑌(0)) ∼  𝑄)  

where 𝑇𝑄 is the time to extinction of the language given that the process is in the 

quasi-stationary state. 
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A relevant proposition is next presented (Lindholm and Britton, 2007): 

Proposition 1: The time to extinction given that the process is started in the 

quasi-stationary distribution 𝑇𝑄, is exponentially distributed with mean 

                                   𝐸(𝑇𝑄) =  𝜏 =
1

𝜃 𝛼 𝑞.,1
                                                  (2.4) 

where 

                                       𝑞.,1 =∑𝑞𝑥,1
𝑥

                                                           (2.5) 

is the marginal probability that 1 indigenous language speaker is left in the 
population. 

Lindholm and Britton (2007) derived an approximation of 𝑞.,1, and thus 𝑇𝑄 

using diffusion approximation.  
Drawing from the central limit theorem, and with a population of size n, then 

approximations for the mean number of indigenous language speakers, 𝜇𝑦 and 

the standard deviation, 𝜎𝑦 are given as (Lindholm and Britton, 2007) 

𝜇𝑦 = 𝑛
𝑅0−1

𝛼𝑅0
 and 𝜎𝑌 =

√𝑛

𝑅0
√(𝑅0 − 1 + 𝑅0

2/𝛼), and when 𝛼 >> 𝑅0 

𝜎𝑌 ≈ √𝑛(𝑅0 − 1)/𝑅0 and 

                      𝑞.,1 ≈
𝑅0

√2𝜋𝑛(𝑅0 − 1)
exp (

−𝑛 (𝑅0 − 1)

2𝛼2
)                                (2.6) 

The quasi-stationary distribution obtained by Lindholm and Britton (2007), as 
presented in equation (2.6) would not be appropriate in the case where the 
lifetime of the individual and the infectious period are of the same order (𝛼 small). 
This is the nature of the indigenous language dynamics, hence we propose an 
alternative approximation for the quasi-stationary distribution as 

     𝑞.,1 ≈  
𝑅0

√2𝜋𝑛(𝑅0 − 1 + 𝑅0
2/𝛼)

exp (
−𝑛 (𝑅0 − 1)

2

2𝛼2(𝑅0 − 1 + 𝑅0
2/𝛼)

)                    (2.7) 

which is better suited for the language characterization due to the fact that the 
residual lifetime and the period language ability are of the same order. 
It is noted that equation (2.7) reduces to equation (2.6) when 𝛼 >> 𝑅0.  

2.3.   Expected time to extinction of the language 

As established in Andersson and Britton (2000), the expected time to 
extinction for the homogeneous mixing case of the SIR model, using the normal 
approximation (equation 2.6)  yields 

                                         𝜏 ≈
√2𝜋𝑛(𝑅0 − 1)

𝜃𝛼𝑅0
exp (

𝑛 (𝑅0 − 1)

2𝛼2
)                                      (2.8) 

When the life length is long in relation to the length of the infectious period, 
the above approximation produces too wide estimates when the sub-community 
sizes are only moderately large (Lindholm and Britton, 2007). A better 
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approximation, well suited for the language scenario with smaller family sizes, 
could be obtained using equation (2.7) instead: 

                                𝜏 ≈
√2𝜋𝑛(𝑅0 − 1)

𝜃𝛼𝑅0
exp (

𝑛 (𝑅0 − 1)
2

2𝛼2 (𝑅0 − 1 +
𝑅0
2

𝛼
)
)                              (2.9) 

Under the scenario of long life length in relation to the length of the infectious 
period, Nasell (2005) proposed that the quasi-stationary distribution of the number 
of infected individuals could be approximated with a geometric distribution with 
𝑝 = 1/𝜇𝑌. If  𝑌 ∼ 𝐺𝑒𝑜(𝑝), then 𝐸(𝑌) = 1/𝑝 = 𝜇𝑌 

When the quasi-stationary distribution of Y is approximated as such, then 

                               𝜏𝑛 ≈
𝑛(𝑅0 − 1)

𝜃𝛼2𝑅0
                                                         (2.10) 

The expected time to extinction when all the k families are started at the 
endemic level, where there is a proportion 𝜀 of contacts between families, 𝜏(𝜀) 
provides a credible challenge in obtaining the estimates of the mean time to 
extinction 𝜏 that is dependent on 𝜀. In actual fact,  𝜏(𝜀) = 𝜏(𝜀, 𝑛, 𝑘, 𝜃, 𝛼, 𝑅0). 

When 𝜀 = 0, all k families are isolated and independent, and starting at the 
endemic level of infection, the expected time until one of the k families recovers is 
𝜏𝑛/𝑘, due to independence and that the expected duration of an epidemic within a 

family is exponentially distributed with mean 𝜏𝑛. Due to the assumption that the 
language-free states are absorbing states of the process, when 𝜀 = 0, the 

expected time until one of the k-1 remaining families recovers is 𝜏𝑛/(𝑘 − 1). 
Repeating the argument yields 

                                                   𝜏(0) = 𝜏𝑛∑
1

𝑖

𝑘

𝑖=1

                                                     (2.11) 

As the number of families, k increases, the sum ∑
1

𝑖

𝑘
𝑖=1  approaches a finite 

value, its limiting value. Hence, the time to extinction will increase with greater 
number of families even with zero interaction between families. 

On the other hand, when 𝜀 = 1, all k families behave as one large community 

of size ∑ 𝑛𝑗
𝑘
𝑗=1 , and we can use the SIR-HM approximation of 𝜏𝑛 with n replaced 

by ∑ 𝑛𝑗
𝑘
𝑗=1  (Lindholm and Britton, 2007). 

𝜏(1) = 𝜏𝑛 

If the 𝑛𝑗′𝑠, the size of the families are small, Lindholm and Britton (2007) 

suggested that the geometric approximation of 𝜏𝑛 may be used to approximate 

𝜏(0) and 𝜏(1), to yield 

𝜏(0)

𝜏(1)
=
1

𝑘
∑

1

𝑖

𝑘

𝑖=1

 

which is less than 1 for 𝑘 > 1, and this implies that 𝜏(0) < 𝜏(1), hence 𝜏(𝜀) is an 
increasing function. 
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For large sizes of the families, Lindholm and Britton (2007) also suggested 

that the truncated normal approximation of 𝜏𝑛 should be used. Furthermore, for 

population sizes such that 𝜇𝑌/𝜎𝑌 > 3 and with 𝛼 >> 𝑅0, 𝜏𝑛 is approximated by 

equation (2.8), and 
𝜏(0)

𝜏(1)
 is also smaller than 1 for sufficiently large n. 

As established by Andersson and Britton (2000), the stationary points of the 

process are the language-free state (1,0) and  

(�̂�, �̂�) = (
𝜈 + 𝜃

𝛽
,
𝜃

𝜈 + 𝜃
(1 −

𝜈 + 𝜃

𝛽
))  = (

1

𝑅0
,
𝑅0 − 1

𝛼𝑅0
)                      (2.12) 

It should be noted that the language-free state (1,0) is stable for 𝑅0 < 1 and 

unstable for 𝑅0 > 1. The point (�̂�, �̂�) is stable for 𝑅0 > 1 (and is otherwise 

negative).   

If 𝑅0 < 1, the language is predicted to die out fairly quickly in the community, 

and if 𝑅0 > 1 then it will rise towards a positive level called the endemic level. 

The basic reproduction number, 𝑅0 works as a threshold determining the 

dynamics of the indigenous language, and is dimensionless. If 𝑅0 ≤ 1, the 

language will go extinct rather quickly. Otherwise the language has a positive 

probability to persist in the population over a long period of time. 

Using principles from the Central Limit Theorem, let us assume that 𝑅0 > 1 

and suppose that the process is started close to the endemic level (𝑛�̂�, 𝑛�̂�). The 

process is positively recurrent and it will become absorbed into the set of 

language-free states {(𝑖, 0), 𝑖 ≥ 0} in finite time. Prior to absorption, small 

fluctuations may be observed around the endemic level and the nature of these 

fluctuations can be examined. Define for 𝑡 ≥ 0 

(�̃�𝑡𝑖 , �̃�𝑡𝑖) = √𝑛(�̅�𝑡𝑖 − 𝑥(𝑡𝑖), �̅�𝑡𝑖 − 𝑦(𝑡𝑖)) 

Andersson and Britton (2000) established that (�̃�𝑡𝑖 , �̃�𝑡𝑖) converges weakly on 

compact time intervals to a Gaussian process (�̃�, �̃�) with mean vector 0 and 

covariance matrix Σ. 

The time to extinction of the indigenous language, 𝑇𝑄 is defined as 

(Andersson and Britton, 2000) 

𝑇𝑄 = inf {𝑖 ≥ 0: 𝑌(𝑡𝑖) = 0} 

𝑇𝑄 is finite for any fixed population size if 𝑅0 > 1. 

According to Andersson and Britton (2000), it is a classical (and very difficult) 

problem to obtain the estimates of 𝑇𝑄. Not even the expected value 𝐸(𝑇𝑄) is easily 

estimated. One approach is to let the population size to become very large and 

regard language extinction as the result of a large deviation from a high endemic 

level. In this regard, asymptotic approximations of 𝐸(𝑇𝑄) are available. There is 

also an heuristic derivation of an approximate expression for 𝐸(𝑇𝑄) (Nasell, 1999), 
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noting that the coefficient of variation of the number of infectious individuals in 

endemicity is given by 

√𝑛Σ̂22
𝑛ŷ

=
√𝑛 (𝑅0 − 1 +

𝑅0
2

𝛼
)

𝑅0

𝛼𝑅0
𝑛(𝑅0 − 1)

≈
𝛼

√𝑛(𝑅0 − 1)
                   (2.13) 

The last approximation is appropriate when 𝛼 >> 𝑅0
2. 

For a real-life disease in a community with heterogeneous mixing, extinction 
may be caused by a normal fluctuation from a not so high endemic level or by a 
large deviation from a high level. In other words, in the absence of a catastrophe 
that may wipe out the disease and the population, the extinction of the disease 
follows a gradual process. 

Simulation results from Andersson and Britton (2000) also show that, for 
realistic parameter values, the Nasell (1999) formula gives a much better 
approximation to the observed time to extinction than does the formula derived by 
van Herwaarden and Grasman (1995). 

The distribution of 𝑇𝑄 depends on the parameters 𝑅0, 𝛼, and 𝜃 as well as the 

size of the population. The extinction times will increase as the basic reproduction 
number increases. In fact, a population that sufficiently reproduces itself will have 
a high value of 𝑅0, which in turn, will produce higher extinction times. 

2.4.  Threshold of endemicity of the language 

At endemicity, the system fluctuates minimally around the endemic level. For 
the process {𝑋(𝑡), 𝑌(𝑡), 𝑡 ≥ 0}, we are interested in the proportion of indigenous 
language speakers at time t. We introduce the random variable 

𝑍(𝑡) =
𝑌(𝑡)

𝑋(𝑡) + 𝑌(𝑡)
=
𝑌(𝑡)

𝑁(𝑡)
 

At time t=0, it is assumed that there are no susceptible individuals and m 
language-speaking individuals, that is, the initial population had indigenous 
language ability. This implies that 𝑍(0) = 1. The value of the random variable 𝑍(𝑡) 
at the endemic level, (�̂�(𝑡)) is the threshold beyond which the language becomes 
endangered, called the threshold of endemicity. Once this threshold is reached, 
there is a high probability that the language will become extinct in the population 
in finite time, in the absence of any external intervention. 

The threshold of endemicity is given as 

�̂� =
�̂�

�̂� + �̂�
=

𝑅0 − 1

𝛼 + 𝑅0 − 1
                                                  (2.14) 

Once a language gets to the endemic level, then the possibility of extinction 
from that point onwards can be very high. At the endemic level, there are small 
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fluctuations before extinction. The endemic level is a somewhat stationary 
position of the process. 

For language survivability, there should only be a small proportion of families 
in the language-free state. 

2.5.  Parameter estimation 

In order to estimate the parameters of the SIR model of language extinction 
for a specified indigenous language, input parameters like the birth rate, life 
expectancy, language transfer rate, mean language-speaking period, mean family 
sizes, etc, have to be extracted from historical data or via a survey of the 
language. These parameters are the inputs needed to obtain the estimates 
derived in the previous section. 

Using these input parameters, the basic reproduction number is computed, 
the expected time to extinction is also obtained, as well as all the other relevant 
metrics to ascertain the virility of the indigenous language, as described in the 
previous section. 

3. Results and discussions 

An indigenous language survey was conducted in some cities in Nigeria in 
2016 and language use data was extracted for some tribes over two generations. 
The questionnaire was constructed such that a respondent could provide 
demographic information and details on the language ability of his siblings and 
children, if any. In addition, data on the fertility profile of Nigerian women and 
average life expectancy of Nigerians, obtained from the 2013 Nigeria 
Demographic Health Survey (NDHS) (NPC, 2014) were used as inputs to 
estimate the model parameters for the surveyed languages.   

The surveyed languages were Yoruba, Igbo, Bini, Urhobo, Esan and Isoko. 
Apart from the major languages of Yoruba and Igbo, the other languages 
emanate mainly from Edo and Delta states in the Niger Delta region of Nigeria. 

The questionnaire contained 19 brief questions with the goal of eliciting 
information on the basic demographic characteristics of the respondent, 
indigenous language use ability of the respondent’s sibling as well as the 
respondent’s children, if any. The questionnaire also contained questions relating 
to the possible reasons for lack of intergenerational transfer of language ability 
from parent to children. A total of 607 respondents provided language use data on 
themselves, their parents, siblings and their children, if any. Hence, the data 
contained information on over 5,000 persons across three generations. 

Data from the indigenous language survey questionnaire were processed via 
the Statistical Package for the Social Sciences (SPSS) and R computing software 
to yield the relevant estimates of the conceptualized model parameters. 

Table 1 is a summary of the estimates of the model input parameters for the 
group of parents and non-parents (first and second generation, respectively) 
surveyed in the various languages. Table 2 captures the estimates of the quasi-
stationary distribution, time to extinction, and threshold of endemicity, for the two 
generations. The estimate of the mean lifetime was 54 years (NPC, 2014), and 
this was assumed to be the same for all the languages. 
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Table 1.  Estimates of the model input parameters (mean family size n, birth rate 

𝜇, indigenous language transfer rate 𝛽, basic reproduction number 𝑅0, 
mean duration of the language transmission period 1/𝜈, and the ratio 

mean lifetime to the mean period of language ability 𝛼) for the first (1st) 
and second (2nd) generations respectively 

Language 
n 𝝁 𝜷 𝑹𝟎(𝟎. 𝟎𝟎𝟏) 𝑹𝟎 

𝟏/𝝂 𝜶 

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 

Igbo 8 5 5.97 2.82 5.61 1.80 4.22 1.35 3.83 1.23 25 3.16 

Yoruba 8 5 5.84 3.04 5.39 1.44 4.00 1.80 3.64 1.64 26 3.08 

Urhobo 9 5 6.27 3.04 4.43 1.44 3.33 1.08 3.03 0.98 25 3.16 

Esan 9 6 6.20 3.78 5.57 2.61 4.08 1.91 3.71 1.74 27 3.00 

Bini 9 5 7.09 3.00 6.46 1.50 4.68 1.09 4.25 1.00 28 2.93 

Isoko 10 5 7.21 2.25 5.90 1.06 4.49 0.81 4.08 0.73 24 3.25 

Others 10 5 7.11 3.17 6.29 1.83 4.61 1.34 4.19 1.22 27 3.00 

 
 
 

Table 2.  Estimates of the marginal quasi-stationary distribution (𝑞.,1), time to 

extinction (𝜏) and threshold of endemicity (�̂�) for the languages 
surveyed for the first (1st) and second (2nd) generations respectively 

Language 
𝒒.,𝟏 𝝉𝒏 𝝉(𝟎) 𝝉 (�̂�) 

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 

Igbo 0.1286 0.2558 32.0 5.06 165.82 26.25 132.84 66.8 0.47 0.07 

Yoruba 0.1275 0.2213 33.1 11.13 171.67 57.74 137.65 79.3 0.46 0.17 

Urhobo 0.1245 0.3280 32.61 -  169.15 - 137.26 52.1 0.39 - 

Esan 0.1104 0.1930 39.44 15.31 204.61 79.42 163.02 93.2 0.47 0.20 

Bini 0.1022 0.3053 43.33 0 224.78 0 180.34 60.4 0.53 0 

Isoko 0.1040 - 38.59 - 200.20 - 159.84 - 0.49 - 

Others 0.0941 0.2524 45.68 5.41 236.96 28.06 191.34 71.3 0.52 0.07 
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The mean family sizes n, ranged from 5 to 10. In order to ensure that all the 
time variables were in the same unit of time, the corresponding annual birth rate 
based on the generational birth rates were computed and used for the 
subsequent calculations. The mean infectious period 1/𝜈 was taken as the 
difference between the mean lifetime and the mean age at marriage. It varied 
across the languages surveyed. 

Since the number of households in Enumeration Areas (EAs), the basic 
sampling unit in Nigerian population censuses, ranged between 80 and 100, we 
chose a value of k=100, which is a reasonable value for the number of 
households in a typical community. 

For the choice of minimal interaction between families, we chose a value of 
𝜀 = 0.001, which is smaller than Lindholm and Britton (2007) choice of 

1/365=0.0027 and yields Pr(𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑜𝑛𝑡𝑎𝑐𝑡) = 0.91, in comparison with Lindholm 
and Britton (2007) choice which yields  Pr(𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑜𝑛𝑡𝑎𝑐𝑡) = 0.79. 

The choice of the value of 𝜀, the proportion of an individual’s language 
interaction with other families was motivated by the desire to keep the probability 
of inter-family interaction below 0.1. That is, we desired that the probability of 
within family interaction should be around 0.9, or that 90% of the language 
interactions among children should be within their family, enforcing the 
assumption of intergenerational transfer of language ability from parent to 
children. 

The basic reproduction number 𝑅0 when 𝜀 = 0.001 was slightly higher than 
the corresponding value when 𝜀 = 0 for all the tribes. The values of 𝑅0 were 
between 3.03 and 4.68 for the first generation data and between 0.73 and 1.80 for 
the second generation data.  

The values of 𝛼, the ratio of life's length to the length of the infectious period, 
were between 2.93 and 3.25 among the tribes. We observed minimal variation in 
the values of 𝛼, pointing to the fact that similar conditions affect individuals in the 
population irrespective of their language. 

The marginal distribution of 1 infectious individual in the family at quasi-

stationarity, 𝑞.,1, had 0.13 as its largest values in the first generation 

(corresponding to the Igbo language) and 0.33 for the Urhobo language in the 
second generation. 

Due to the generational decline in the values of 𝑅0, the expected time to 

extinction for the families, 𝜏𝑛 also exhibited declines between the two generations. 

Similarly, the same scenario is replicated for 𝜏(0) and  𝜏.  
The threshold of endemicity �̂� also showed sometimes sharp decline between 

both generations across the surveyed languages. However, as should be 
expected for languages on the lower fringes of the extinction scale, the declines 
were steeper. The Urhobo and Bini languages had the lowest threshold of 
endemicity.Higher values of �̂� imply that the process will remain in endemicity for 
a longer time before it is absorbed, while lower values imply that the process will 
only spend little time until absorption. 

Once the process gets to endemicity/ quasi-stationarity, then in finite time, in 
the absence of any external intervention, the process will be absorbed even with 
𝑅0 > 1. 
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For the language to remain virile, it should be far away from the quasi-
stationary level and programmes and policies put in place to ensure steady 
growth of the language-speaking population. 

The total fertility rate, which is the expected number of children an average 
Nigerian woman would have born at the end of the childbearing cycle (15–49 
years) was about 5.5 (NPC, 2014). This value was not too far off from our survey 
data for all the tribes. 

4. Conclusion  

The SIR model of language extinction provides a useful approach to 
ascertaining the status of any language globally, with the use of historical or 
survey data. This conceptualization therefore provides a tool that can be deployed 
to document the status of the world’s numerous indigenous languages. 

On the basis of the expected time to extinction, conditioned on quasi-
stationarity, several of the surveyed Nigerian languages were seen to be in 
precarious conditions, while a few others are seemingly virile based on a high 
language transfer quotient within families. While it is difficult to correctly predict 
the time to extinction due to the limited nature of the survey, the rapid decline in 
indigenous language ability among younger Nigerians point to the possibility of 
extinction as the older generation exit the population. 

The threshold of endemicity, which reflects the proportion of the language-
speaking population in stationarity, also point to decline and threat of extinction in 
relation to the younger generation across the surveyed Nigerian languages. 

The goal of indigenous language stakeholders is to enhance the level of use 
of the indigenous language in both private and public domains. In essence, 
language practitioners will desire the value of 𝜀 to be very close to 1. That will 
signal the virility of any indigenous language  

In the presence of historical data, the model could provide a good perspective 
of the indigenous language dynamics vis a vis demographic, economic and social 
changes. In such situations, the progression of any indigenous language could be 
tracked effectively, so that when the proportion of speakers fall below the allowed 
threshold, necessary short-term and long-term interventions could be made by 
governments and other stakeholders. 

Areas of possible extension of the model framework are given below: 
i. The model could be modified to accommodate greater heterogeneities 

(age, sex, location, etc), as there could be certain segments of the 
population with varying indigenous language transmission rates and 
residual lifetimes; 

ii. a simulation scheme could be conceptualized and developed to sufficiently 
capture the dynamics of any language decline, using initial parameter 
estimates obtained from survey or historical data; 

iii. the value of the global infection rate can be modelled as a function of k, the 
number of families in the population, as the present model 
produces estimates of 𝑅0 that tend to be far higher as k increases; 
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iv. better approximations for the expected time to extinction could be designed 
when 
there are smaller family sizes; and 

v. models that adequately accommodate the transient behaviour of language 
decline over times could be developed to study the indigenous languages. 
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ESTIMATING POPULATION COEFFICIENT OF VARIATION 
USING A SINGLE AUXILIARY VARIABLE IN SIMPLE 

RANDOM SAMPLING 

Rajesh Singh1, Madhulika Mishra2 

ABSTRACT 

This paper proposes an improved estimation method for the population coefficient 
of variation, which uses information on a single auxiliary variable. The authors 
derived the expressions for the mean squared error of the proposed estimators up 
to the first order of approximation. It was demonstrated that the estimators 
proposed by the authors are more efficient than the existing ones. The results of 
the study were validated by both empirical and simulation studies. 

Key words: coefficient of variation, simple random sampling, auxiliary variable, 

mean square error. 

1. Introduction 

It is a prominent fact in the theory of sample surveys that suitable use of 
auxiliary information increases the efficiency of the estimators used for estimating 
the unknown population parameters. Some important works illustrating use of 
auxiliary information at estimation stage are Singh et al. (2005), Singh et al. 
(2007), Khoshnevisan et al. (2007), Singh et al. (2009), Singh and Kumar (2011), 
Malik and Singh (2013) and Singh et al. (2018). Over a vast period of time 
a substantial amount of work has been done by several authors for the estimation 
of population mean, population variance but little attention has been given to the 
estimation of the population coefficient of variation. Das and Tripathi (1992–93) 
first proposed the estimator for the coefficient of variation when samples were 
selected using simple random sampling without replacement (SRSWOR) scheme. 
Other works include Patel and Shah (2009) and Ahmed, S.E. (2002). Breunig 
(2001) suggested an almost unbiased estimator of the coefficient of variation. 
Sisodia and Dwivedi (1981) suggested a modified ratio estimator using the 
coefficient of variation of auxiliary variable.  
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Rajyaguru and Gupta (2005) also worked on the problem of estimation of the 
coefficient of variation under simple random sampling and stratified random 
sampling. 

The coefficient of variation is extensively used in biology, agriculture and 
environmental sciences. 

A brief summary of the paper is as follows. 

Section 1 is introductory in nature, comprises the works that have been 
already done in the sampling literature. In Section 2 we considered five estimators 
for comparison purposes and their properties. In Section 3, we proposed two log 
type estimators for the coefficient of variation, one general type estimator and one 
wider type. In Section 4, an empirical study was carried out in support of our 
results. In Section 5, we carried out a simulation study to validate our theoretical 
results and have presented them with the help of bar graphs. In Section 6 we 
finally concluded our results. 

Let us consider a finite population P = (P1, P2……… PN) of size ‘N’ consisting 
of distinct and identifiable units. Let the study and auxiliary variables be denoted 
by Y and X, and let Yi and Xi be their values corresponding to ith unit in the 
population (i = 1, 2………. N). We define: 





N

i

iY
N

Y
1

1
as the population mean for the study variable 





N

i

iX
N

X
1

1
as the population mean for the auxiliary variable 








N

i

iy YY
N

S
1

22

1

1
as the population mean square for the study variable 








N

i

ix XX
N

S
1

22

1

1
as the population mean square for the auxiliary 
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 
11

1
as the population covariance between the 

study and auxiliary variable, X and Y. 

Let us suppose that a sample of size ‘n’ has been drawn from this population 
of size ‘N’ units using SRSWOR technique. For this sample let yi and xi denote 
values of the ith sample unit corresponding to study variable Y and auxiliary 
variable X respectively.  

For the sample observations, we define: 
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n
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as the sample mean for the study variable Y 
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Here, 
N

n
   f : Sampling fraction,  

Y

S
   

y
yC  and  

X

S
   xxC  are the 

population coefficient of variation for the study variable Y and auxiliary variable X, 

respectively. Also xy denotes the correlation coefficient between X and Y. 
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In general,  
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2. Existing estimators 

 The usual unbiased estimator to estimate the population coefficient of variation 
using information on a single auxiliary variable is defined below: 
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Its mean squared error (MSE) is given by: 
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 Solanki et al. (2015) introduced a difference type estimator for the population 

coefficient of variation yC
 
as: 
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 Solanki et al. (2015) defined another class of estimator for the population 

coefficient of variation  yC
 
as: 
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On differentiating equation (2.6) with respect to 1 and 2 , we obtain their 

optimum values as: 
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On substituting these optimum values of 1  and ,2  
 in equation (2.6), we 

obtain the Minimum MSE for the estimator 
*

dC as: 
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 Adichwal et al. (2016) proposed a two-parameter ratio-product-ratio estimator 
for the population coefficient of variation as: 
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MSE of the estimators 1rt and 2rt are respectively given by: 
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3. Proposed estimators 

We have proposed some estimators for the coefficient of variation based on 
information on a single auxiliary variable. 

Motivated by Mishra and Singh (2017), we propose improved log type 
estimators for estimating the population coefficient of variation given by: 

estimators t1 and t2 as:  
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Expressing the estimator 1t and in terms of s' and then taking expectations 

up to the first order of approximation, we get MSE of  the estimator  as:  
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To obtain the optimum value of , we partially differentiate the expression 

(3.4) with respect to    and we obtain the optimum value as: 
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Expressing the estimators 2t in terms of s' and then taking expectations up 

to the first order of approximation we  get MSE  of  the estimator 2t  as:  

  

   
















 








 




















 
 30

22
1

2
30

4022
y2

1
2

1
31

4

11
C  )( 


yyyyy C

n

f
C

n

f
wCCC

n

f
tMSE

 




















 




















 
30

402

1

2

03

0422

2
2

3

8

1
2

1
2

4

11






yyyxx CC

n

f
wCCC

n

f
w

 

 





















 

224

1

4

1

2

1
2 21120422

2

21


 xy

xy
x

y

CC
CC

C

n

f
wwC  



96                                                R. Singh, M. Mishra: Estimating population coefficient… 

 

 

  


















 

224

11
2 211222

2


 xy

xyy

CC
CC

n

f
wC     (3.8) 

 

  6252141

2

3

2

22

2

1

2

1

2

y2 222C BwCBwwCBwCBwBwCBtMSE yyyy   

  (3.9) 

 

Here, 




















 
 30

402

1
4

11
  


yy CC

n

f
B       

30

2

2

1
2

1
31  yy C

n

f
C

n

f
B 







 








 
  




















 
 03

042

3
4

11
  


xx CC

n

f
B

       

 




















 
 30

402

4
2

3

8

1
2

1
  


yy CC

n

f
B              (3.10) 























 


224

1

4

1

2

1
  21120422

2

5


 xy

xy
x CC

CC
C

n

f
B  




















 


224

11
  211222

6


 xy

xy

CC
CC

n

f
B  

 

To obtain the optimum value of 1w  and ,w 2 we differentiate the expression 

(2.21) with respect to 1w and 2w and obtain the optimum values as: 


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         (3.11) 
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Putting these optimum values of 1w  and 2w  in equation (2.21), we get the 

minimum value for  2tMSE  as: 

  6252141

2

3

2

22

2

1

2

1

2

y2 222C BwCBwwCBwCBwBwCBtMSE optyoptoptyoptyoptopty 

 (3.13) 

 

c) Following Srivastava and Jhajj (1981), we propose a general class of 

estimators to estimate the population coefficient of variation yC of the study 

variable Y using known mean and known variance of auxiliary variable X as: 

 vuHCt y ,ˆ
3            (3.14) 

where 
X

x
u  , 

2

x

2

x

S

s
 v  and  vuH ,  is a function of u and v  such that the point 

 vu, assumes the value in a closed convex subset 2R of two-dimensional real 

space containing the point  1,1 ; 

The function  vuH ,  is continuous and bounded in 2R ; 

  ;11,1 H
 

The first and the second order partial derivatives of  vuH , exist and are 

continuous and bounded in 2R . 

 

Expanding  vuH , about the point  1,1  in a second order Taylor’s series we 

obtain  

      11 ,11Ĉ  ,Ĉ  yy3  vuHvuHt
               (3.15) 
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 5314

2

33

2

12311y3 1Ĉ  HHHHHt 
      (3.17) 
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Substituting the value of yĈ in the above expression (2.28), we get 

 5314

2

33

2

12311

2

22022

003 1
822

1 HHHHHCt y 








 






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 (3.18) 

Mean square error of the estimator t3 is given by  
 

     
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  (3.19) 

 

Simplifying the expression (2.30), we get 
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    (3.20) 

 

In order to obtain the minimum MSE for the estimator ,t3 we partially 

differentiate the  expression (2.31)  with respect to 1H and 2H  to get the 

optimum values as  
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Substituting these optimum values of 1H and 2H  in equation (2.31), we 

obtain the expression for the minimum MSE of 3t  
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 (3.23) 
 

d) Again, following  Srivastava and Jhajj (1981), we propose a wider class of 

estimators to estimate the population coefficient of variation 
yC as: 

 vuCHt y ,,ˆ*

4            (3.24) 
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  is a function of yĈ ,u and v  such that  

the point  vuC y ,,ˆ assumes the value in a closed convex subset 3R of three-

dimensional real space containing the point  1,1,yC ; 

The function  vuCH y ,,ˆ*
 is continuous and bounded in 3R ; 
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The first and the second order partial derivatives of  vuCH y ,,ˆ*
 exist and 

are continuous and bounded in 3R . 

Expanding  vuCH y ,,ˆ*
 about the point  1,1,yC  in a second order Taylor’s 

series, we have 
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Now, substituting the value of yĈ
 
in equation (2.37), we have  
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After simplifying the expression (2.39), we get: 
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In order to obtain the minimum MSE for the estimator 4t we partially 

differentiate the expression (2.40) with respect to 
*

1H and 
*

2H and obtain 

optimum values as: 
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Substituting these optimum values of 
*

1H and 
*

2H  in equation (2.40), we 

obtain the expression for the minimum MSE of 4t  
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4. Empirical study 

In this section, we have carried out an empirical study to explicate the 
performance of our proposed estimator. We used the following data sets: 
 

Population I:  399 p. (1967),Murthy  :Source . 

X: Area under wheat in 1963, 

Y: Area under wheat in 1964, 

N=34, n=15, 
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X =208.88, Y =199.44,  

72.0CX  , YC =0.75, 98.0
XY
 ,  

0045.121  , 9406.012  , 6161.340  , 8266.204  , 1128.130  , 

9206.003  , 0133.322   

Population II:  1116 p. (2003),Singh Sarjinder  :Source . 

X: Number of fish caught in year 1993, 

Y: Number of fish caught in year 1995, 

N=69, n=40, 

X =4591.07, Y =4514.89,  

38.1CX  , 
YC =1.35, 

19.221  , 30.212  , 66.740  , 84.904  , 11.130  , 52.203  , 19.822   

In order to determine the Percent Relative Efficiency (PRE) of the estimators 
we have used the following formula  

 
 
 

100, 0 
tMSE

tVar
ttPRE o  

where 432121
* .,,,,,, ttttttCCt rrdd . 

 

Table 1.  MSE and PRE of the estimators 

ESTIMATOR 
POPULATION-1 POPULATION-2  

MSE PRE MSE PRE 

0t  0.008016 100.00 0.0380 100.00 

dC  0.00123 651.7051 0.0298 127.4607 

*

dC  0.00122 654.4814 0.0285 133.2609 

1rt  0.006868 116.54 0.037313 102.04 

2rt  0.006963 114.95 0.037563 101.36 
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Table 1.  MSE and PRE of the estimators  (cont.( 

ESTIMATOR 
POPULATION-1 POPULATION-2  

MSE PRE MSE PRE 

1t  0.00123 651.7356 0.0299 127.4598 

2t  0.001038 771.9898 0.0283 134.6127 

3t  0.001203 666.4304 0.0297 128.345 

4t  0.001203 666.4304 0.0297 128.345 

 
We can summarize the results from Table 1 as: 

All the proposed estimators 1t , 2t , 3t and 4t are more efficient than the usual 

unbiased estimator 0t .The estimator 1t  turns out to be nearly as efficient as 

the difference type estimator dC while all the remaining estimators, 2t , 3t  and 

4t  are more efficient than the estimators dC , 
*

dC , 1rt  and 2rt . Among all the 

estimators, 2t  is the most efficient because of the smallest value of MSE and 

highest value of PRE. 

5. Simulation studies 

This section describes the procedure that we adopted for the simulation study. 
We have used R programming for calculating MSE of the existing and proposed 
estimators. We followed the procedure adopted by Reddy et al. (2010) and have 
generated bivariate population with a specified correlation coefficient between the 
study and auxiliary variable. The algorithm is as follows: 

1.  Generate two independent random variables X from ),( 2N  and Z from 

),( 2
11 N  using Box-Muller method (Jhonson, 1987). 

2.  Set ZXY 21    where 195.0,85.0,75.00  . 

3.  Consider the population with the parameters 5.2 , 22   ,  51

32
1   and repeat the steps 1-2 2000 times. 

4.  From the population of size N=2000, draw 1500 simple random samples 

),.....,2,1(),( nixy ii  without replacement of size 70,50,30n . 
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5.  For each of the sample, compute MSE of the estimators ot , Cd , *Cd , 1t , 2t , 

1rt  and 2rt . 

6.  Compute the average MSE of the estimator by the following formula: 

         




1500

1
1500

1

j

j imseiMSE    where 2121
* ,,,,, rro tandtttCdCdti . 

Table 2.  Table showing MSE and PRE of the existing and proposed estimators 
for different values of   and n 

  n Estimator MSE PRE 

 

 

ot  0.006053626 100.0000 

Cd  0.004924006 122.9410 

*Cd  0.004617663 131.0970 

1rt  0.005080027 119.1651 

2rt  0.005532107 109.4270 

1t  0.004668748 129.6626 

2t  0.004552470 132.9744 

50 

ot  0.003450581 100.0000 

Cd  0.002835622 121.6869 

*Cd  0.002671694 129.1533 

1rt  0.002688403 117.5860 

2rt  0.002650186 109.5933 

1t  0.002934516 128.3506 

2t  0.003148534 130.2015 

70 

ot  0.002412659 100.0000 

Cd  0.001990824 121.1889 

*Cd  0.001879170 128.3896 

1rt  0.002062564 116.9737 

2rt  0.002200267 109.6530 

1t  0.001887289 127.8373 

2t  0.001868644 129.1128 
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0.85 

30 

ot  0.006358341 100.0000 

Cd  0.004912595 129.4294 

*Cd  0.003809327 166.9151 

1rt  0.004876890 130.3769 

2rt  0.005133219 123.8665 

1t  0.003831045 165.9688 

2t  0.003739557 170.0293 

50 

ot  0.003621428 100.0000 

Cd  0.002828737 128.0228 

*Cd  0.002203557 164.3447 

1rt  0.002825058 128.1895 

2rt  0.002910006 124.4474 

1t  0.002210627 163.8190 

2t  0.002180249 166.1016 

70 

ot  0.002527309 100.0000 

Cd  0.001982556 127.4561 

*Cd  0.001547597 163.3054 

1rt  0.001984483 127.3535 

2rt  0.002027634 124.6433 

1t  0.001551035 162.9434 

2t  0.001536162 164.5210 
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95 

30 

ot  0.008647395 100.0000 

Cd  0.005851489 147.7811 

*Cd  0.002426053 356.4389 

1rt  0.005461214 158.3420 

2rt  0.005113439 169.1094 

1t  0.002430095 355.8459 

2t  0.002364604 365.7015 

50 

ot  0.004896276 100.0000 

Cd  0.003355658 145.9111 

*Cd  0.001397620 350.3295 

1rt  0.003172583 154.3309 

2rt  0.002841595 172.3073 

1t  0.001398209 350.1820 

2t  0.001376286 355.7601 

70 

ot  0.0034018746 100.0000 

Cd  0.0023435450 145.1593 

*Cd  0.009782472 347.7520 

1rt  0.0022234723 152.9983 

2rt  0.0019631488 173.2866 

1t  0.0009784789 347.6697 

2t  0.0009677328 351.5304 

 

From the table, we can observe that for a particular value of   the value of 

MSE of the estimators decreases as the sample size increases. Also, we can see 

that in each of the cases among the proposed estimators 1t and 2t , 2t is more 

efficient amongst all the existing estimators ot , Cd , *Cd , 1rt , 2rt and the proposed 

estimator 1t while the estimator 1t  turns out to be more efficient than the existing 

estimators ot , Cd , 1rt , 2rt and nearly as efficient as the estimator *Cd . Hence, it 

turns out that the proposed estimator performs better than the existing estimators, 
therefore it is desirable to use the estimator in practice. 
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We have also shown the results through a bar diagram as below: 

 

 
 
 

Bar graph showing MSEs of the existing and proposed estimators for 75.0
and (n1, n2, n3)= (30, 50, 70) 
 
 

Explanation: It can be seen from the bar graph that for 75.0 , MSE of all the 

estimators decreases as the value of the sample size (n) increases. And for 

a particular value of n, estimator 2t has the least MSE among all the other 

estimators. 
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Bar graph showing MSEs of the existing and proposed estimators 85.0 and 

(n1, n2, n3) = (30, 50, 70) 
 
 

Explanation: It can be seen from the bar graph that for 85.0 , MSE of all the 

estimators decreases as the value of the sample size (n) increases. And for 

a particular value of n, estimator 2t  has the least MSE among all the other 

estimators. 
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 Bar graph showing MSE of the existing and proposed estimators 85.0 and 

(n1, n2, n3)= (30, 50, 70) 
 
 

Explanation: It can be seen from the bar graph that for 95.0 , MSE of all the 

estimators decreases as the value of the sample size (n) increases. And for 

a particular value of n, estimator 2t has the least MSE among all the other 

estimators. 
 
Combined Explanation: From the above three bar graphs it can be summarized 

that for every value of  95.0,85.0,75.0 , the increase in the sample size 

causes a decrease in the mean square error of all the estimators. It is also 

evident that for a particular value of n, 2t has the minimum MSE as compared to 

the other estimators. 

6.  Conclusion 

In this paper we have proposed estimators for the population coefficient of 
variation and compared them with some existing estimators and saw from the 

empirical and simulation studies that the proposed estimator 2t  performs better 
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than all the existing estimators  ot , Cd , *
dC  , 1rt , 2rt  and the proposed estimator 

1t . As regards 1t , it performs better than the estimators ot ,Cd , 
1rt , 

2rt but is no 

more better than the estimator *
dC . For a better understanding of our results we 

have also considered a graphical approach and considered bar graphs to depict 
our results. 
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ESTIMATION OF INCOME CHARACTERISTICS FOR 
REGIONS IN POLAND USING SPATIO-TEMPORAL SMALL 

AREA MODELS 

Alina Jędrzejczak1,2, Jan Kubacki2 

ABSTRACT 

The paper presents the comparison of estimation results for spatial and 
spatiotemporal small area models. The study was carried out for income-related 
variables drawn from the Polish Household Budget Survey and explanatory 
variables from the Polish Local Data Bank for the years 2003-2013. The properties 
of EBLUPs (Empirical Best Linear Unbiased Predictors) based on spatiotemporal 
models, which utilize spatial correlation between neighbouring areas as well as 
historical data, were compared and contrasted with EBLUPs based on spatial 
models obtained separately for each year and with EBLUPs based on the Rao-Yu 
model. The computations were performed using sae, sae2 and spdep packages 
for R-project environment. In the case of sae package, the eblupFH, eblupSFH 
and the eblupSTFH functions were used for point estimation along with the 
mseFH, mseSFH and the pbmseSTFH functions for the MSE estimation, whereas 
the eblupRY function was applied for the purposes of sae2 package. The precision 
of direct estimators was guaranteed by the adoption of the Balanced Repeated 
Replication method. The results of the analysis demonstrate that a visible 
reduction of the estimation error was achieved for the implemented spatiotemporal 
small-area models, especially when significant spatial and time autocorrelations 
were observed. These results are even more valuable than those achieved by the 
means of the Rao-Yu model. In the computations, three author-defined functions 
were adopted, which not only enabled the author to perform the extract of random 
effects for spatial, spatiotemporal and Rao-Yu models, but also made it possible to 
obtain their decomposition with respect to spatial and temporal parts, thus creating  
a novel solution. The comparison was carried out using choropleth maps for 
spatial effects and distributions of temporal random effects for the considered 
years. 

Key words: small area estimation, spatio-temporal models, Rao-Yu model, 

EBLUP estimation. 
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1. Introduction 

Statistical surveys are often designed to provide data that allow reliable 
estimation for the whole country and larger administrative units such as regions 
(in Poland – voivodships). However, for more specific variables the overall sample 
size is seldom large enough to yield direct estimates of adequate precision for all 
the domains of interest. In such cases, large estimation errors can make the 
inference unreliable and useless for decision-makers. The estimation errors can 
be reduced, however, by means of the model-based approach. Moreover, when 
an evident correlation exists between survey and administrative data, also the 
bias of the estimates can be reduced. 

Small area estimation (SAE) offers a wide range of methods that can be 
applied when a sample size is insufficient to obtain high precision by means of 
conventional direct estimates. The techniques based on small area models - 
empirical best linear unbiased prediction (EBLUP) as well as empirical and 
hierarchical Bayes (EB and HB), seem to have a distinct advantage over other 
methods. One of these techniques is the spatio-temporal EBLUP technique, 
introduced by Marhuenda, Molina and Morales (2013).  It is based on the 
assumption that the spatial relationships between domains can be modelled by 
a sum of two components: the simultaneous autoregressive process SAR (see: 
Pratesi and Salvati (2008), p. 114) and an additional time-related process 
described by AR(1) scheme (see: Rao, Yu (1992, 1994)). Both these assumptions 
are involved in the covariance structure of the spatio-temporal model. Related 
Spatial EBLUP (Spatial Empirical Best Linear Unbiased Prediction), which was 
introduced by Cressie (1991) and is explained in detail in Saei and Chambers 
(2003), Pratesi and Salvati (2004, 2005, 2008), Singh et al. (2005), Petrucci and 
Salvati (2006), can be considered as a reference point for spatio-temporal 
models. Recently, the Spatial EBLUP technique was used in ‘sae’ package 
(Molina, Marhuenda (2013)) for R-project environment published in CRAN 
resources. Moreover, some spatial econometric models were discussed 
in Griffith, D.A., Paelinck, J.H.P. (2011) and Kubacki, Jędrzejczak (2016), where 
MCMC (Markov Chain Monte Carlo) applications for spatial models are 
presented. 

In the paper we compare several approaches to the spatial and spatio-
temporal modelling implemented for small area estimation. In our opinion, spatio-
temporal estimation can be sometimes useful with respect to the traditional 
EBLUP approach. This is because of better efficiency of such models, which not 
only incorporate ordinary spatial relationships (using proximity matrix), but also 
assume time-related dependencies. It can be useful when visible time-related 
relationships are observed in a data set. These models, using sample and 
auxiliary information from other domains as well as other time periods, can yield 
substantial quality improvements as compared to ordinary small area models, 
where only explanatory variables from administrative sources or other statistical 
surveys are used. It is also related to imposing certain constraints that can 
positively affect the quality of obtained estimates. The models with time-related 
covariance structure can additionally be helpful in the analysis of the dynamics of 
the observed phenomena, which can be supplementary related to the 
econometric models, including the panel models (Jędrzejczak, Kubacki (2016)). 
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2. Estimation for small areas using spatio-temporal Fay-Herriot 
model 

In the paper the primary target results were those related to the Spatio-
Temporal Fay-Ferriot model (STFH), being the extension of the classical Fay-
Herriot small area model. The methodology for such models was described 
in detail by Marhuenda, Molina and Morales (2013). Under the spatio-temporal 
small area model, the area parameter for domain d at current time instant T is 
estimated as borrowing strength from other time instants and from the D domains. 

Let 𝜃𝑑𝑡 represent the variable of interest determined for area d and time t  where 
𝑑 = 1,… , 𝐷, and 𝑡 = 1,… , 𝑇. If the direct estimator of this quantity is denoted by 

�̂�𝑑𝑡
𝐷𝐼𝑅, and the sampling errors are expressed as edt, which are assumed to be 

independent and normally distributed with known variances dt, the spatio-
temporal model can be written as below 

�̂�𝑑𝑡
𝐷𝐼𝑅 = 𝜃𝑑𝑡 + 𝑒𝑑𝑡          (1) 

The relationship above is valid for all considered d and t. The equation (1) can 
also be expressed by means of the model which incorporates spatio-temporal 
relationships of the form 

𝜃𝑑𝑡 = 𝐱𝑑𝑡
𝑇 𝛽 + 𝑢1𝑑 + 𝑢2𝑑𝑡        (2) 

Here, xdt  are the vectors of p auxiliary variables representing regression 
structure of  θdt ,  with regression coefficients β. The area-time random effects can 

be expressed by (𝑢2𝑑1, … , 𝑢2𝑑𝑇)
𝑇 and are assumed identically and independently 

distributed for each area. Moreover, they follow the AR(1) process with 
autocorrelation parameter 𝜌2, which can be described as 

𝑢2𝑑𝑡 = 𝜌2𝑢2𝑑,𝑡−1 + 𝜖2𝑑𝑡,  where |𝜌2| < 1 and  𝜖2𝑑𝑡  𝑁(0, 𝜎2
2

~
𝑖𝑖𝑑 )        (3) 

The area-related random effects, expressed by (𝑢11, … , 𝑢1𝐷)
𝑇, are subject to 

the SAR process with variance parameter 𝜎1
2, spatial autocorrelation ρ1 and 

proximity matrix W = (wd,l), which can be obtained from an original proximity 
matrix W0 , whose diagonal elements are equal to zero and the remaining entries 
are equal to 1 (when the two areas corresponding to the row and the column 
indices are considered as neighbour and zero otherwise). Then, W is obtained by 
row-standardization of W0, obtained by dividing each entry of W0 by the sum of 
elements in the same row. The area level random effects can be described as 

𝑢𝑖𝑑 = 𝜌1 ∑ 𝑤𝑑,𝑙𝑢1𝑙 + 𝜖1𝑑𝑙≠𝑑  where |𝜌1| < 1 and  𝜖1𝑑  𝑁(0, 𝜎1
2

~
𝑖𝑖𝑑 )        (4) 

Using the stacking notations for vectors and matrices one can present the 
following relationships for the considered model: 

𝐲 = ( (�̂�𝑑𝑡
𝑑𝑖𝑟)1≤𝑡≤𝑇

𝑐𝑜𝑙    )1≤𝑑≤𝐷
𝑐𝑜𝑙     ,  𝐗 = ( (𝑥𝑑𝑡

𝑇 )1≤𝑡≤𝑇
𝑐𝑜𝑙    )1≤𝑑≤𝐷

𝑐𝑜𝑙     

𝐞 = ( (𝑒𝑑𝑡)1≤𝑡≤𝑇
𝑐𝑜𝑙    )1≤𝑑≤𝐷

𝑐𝑜𝑙    , 𝐮1 = (𝑢1𝑑)1≤𝑑≤𝐷
𝑐𝑜𝑙    , 𝐮2 = ( (𝑢2𝑑𝑡)1≤𝑡≤𝑇

𝑐𝑜𝑙    )1≤𝑑≤𝐷
𝑐𝑜𝑙     
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Also, one can define additionally 𝐙1 = 𝐈𝐷⨂𝟏𝑇 , where 𝐈𝐷, is the D x D identity 

matrix, 𝟏𝑇 is the vector of 1’s and has length T, and ⨂ is the Kronecker product, 

𝐙2 = 𝐈𝑛, where n=DT is the total number of observations, 𝐮 = (𝐮1
𝑇 , 𝐮2

𝑇)𝑇  and 𝐙 =
(𝐙1, 𝐙2).  

Using the notation presented above we can describe the spatio-temporal 
model in terms of the general linear mixed model, which has the following form: 

𝐲 = 𝐗𝜷 + 𝐙𝐮 + 𝐞 

Let 𝜹 = (𝜎1
2, 𝜌1, 𝜎2

2, 𝜌2) denote the vector of covariance structure parameters 
involved in the model above. We can use the following relationships for the vector 
e related to direct estimation error: 𝐞~𝑁(𝟎𝑛, 𝛙), where 𝟎𝑛 denotes a vector 

of zeroes that has the length n and 𝛙 is the diagonal matrix 𝜓 =
𝑑𝑖𝑎𝑔1≤𝑑≤𝐷(𝑑𝑖𝑎𝑔1≤𝑡≤𝑇(𝜓𝑑𝑡)). 

The random effects u are also normally distributed 𝐮~𝑁{𝟎𝑛, 𝐆(𝛅)}, where the 
covariance matrix G can be expressed as the block diagonal matrix of the 

following form: 𝐆(𝛅) = 𝑑𝑖𝑎𝑔{𝜎1
2𝛀𝟏(𝜌1), 𝜎2

2𝛀𝟐(𝜌2)}. The matrices 𝛀1and 𝛀2 are 
defined as 

                                    𝛀1(𝜌1) = {(𝐈𝐷 − 𝜌1𝐖)
𝑇(𝐈𝐷 − 𝜌1𝐖)}

−1      (5)  

                                           𝛀2(𝜌2) = 𝑑𝑖𝑎𝑔1≤𝑑≤𝐷{𝛀2𝑑(𝜌2)} 

                          𝛀2𝑑(𝜌2) =
1

1−𝜌2
2

(

  
 

1 𝜌2      0… 𝜌2
𝑇−2   𝜌2

𝑇−1

𝜌2 1      ⋱  1       𝜌2
𝑇−2

⋮   ⋱     ⋱         ⋱     ⋮
𝜌2
𝑇−2           ⋱    1 𝜌2

𝜌2
𝑇−1 𝜌2

𝑇−2 …        𝜌2 1 )

  
 

    (6)  

 

The covariance matrix for the full model (including the sampling error) can be 
expressed as 

𝐕(𝛅) = 𝐙𝐆(𝛅)𝐙𝑇 +𝚿 

The vector β and the random effects u can be obtained using BLUP estimator 

�̃�(𝛅) by means of the following equations, utilizing X, G, V and Z matrices: 

�̃�(𝛅) = {𝐗𝑇𝐕−1(𝛅)𝐗}−1𝐗𝑇𝐕−1(𝛅)𝐲 

�̃�(𝛅) = 𝐆(𝛅)𝐙𝑇𝐕−1(𝛅){𝐲 − 𝐗�̃�(𝛅)} 

Because 𝐮 = (𝐮1
𝑇 , 𝐮2

𝑇)𝑇, the second equation given above can be decomposed 
as follows 

�̃�𝟏(𝛅) = 𝜎1
2𝛀1(𝜌1)𝐙1

𝑇𝐕−1(𝛅){𝐲 − 𝐗�̃�(𝛅)}      (7) 

�̃�2(𝛅) = 𝜎2
2𝛀2(𝜌2)𝐕

−1(𝛅){𝐲 − 𝐗�̃�(𝛅)} 
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3.  REML estimation method for spatio-temporal model 

The method of Restricted Maximum Likelihood (REML) uses maximization for 
the likelihood function, which corresponds to the joint probability density function 

as a vector of n-p linearly independent contrasts expressed as 𝐅𝐓𝐲 where F is the 
𝑛 × (𝑛 − 𝑝) full column rank satisfying the relationships 𝐅𝑇𝐅 = 𝐈𝑛−𝑝 and 𝐅𝑇𝐗 =

𝟎𝑛−𝑝. From the previous conditions, the probability density function of the contrast 

vectors can be expressed as 

𝑓𝑅(𝛅; 𝐲) = (2𝜋)
−(𝑛−𝑝)/2|𝐗𝑇𝐗|1/2|𝐕(𝛅)|−1/2|𝐗𝑇𝐕−1𝐗|−1/2exp {−

1

2
𝐲𝑇𝐏(𝛅)𝐲} 

where P matrix satisfies the condition 

𝐏(𝛅) = 𝐕−1(𝛅) − 𝐕−1(𝛅)𝐗{𝐗𝑇𝐕−1(𝛅)𝐗}−1𝐗𝑇𝐕−1(𝛅) 

The matrix P satisfies the following relationships 𝐏(𝛅)𝐕(𝛅)𝐏(𝛅) = 𝐏(𝛅) and 

𝐏(𝛅)𝐗 = 𝟎𝑛. The REML estimator maximizes the log likelihood function ℓ𝑅(𝛅; 𝐲) =
log 𝑓𝑅(𝛅; 𝐲) using Fisher scoring algorithm. This algorithm utilizes scoring vectors 

of the form 𝑆𝑅(𝛅) = 𝜕ℓ𝑅(𝛅; 𝐲)/𝜕𝛅 as well as the Fisher information matrix which is  

ℑ𝑅(𝛅) = −𝐸 {
𝜕2ℓ𝑅(𝛿;𝑦)

𝜕𝛿𝜕𝛿′
} = (ℑ𝑟𝑠

𝑅 (𝛅)). 

 
For the spatio-temporal model with four variance components we have the 

following relationship 

𝜕𝐏(𝛅)

𝜕𝛿𝑟
= −𝐏(𝛅)

𝜕𝐕(𝛅)

𝜕𝛿𝑟
𝐏(𝛅) 

for r=1,…,4. The first order derivative of  ℓ𝑅(𝛅; 𝐲), with respect to δr can be given 
as below 

𝑆𝑟
𝑅(𝛅) = −

1

2
𝑡𝑟 {𝐏(𝛅)

𝜕𝐕(𝛅)

𝜕𝛿𝑟
} +

1

2
𝐲𝑇𝐏(𝛅)

𝜕𝐕(𝛅)

𝜕𝛿𝑟
𝐏(𝛅)𝐲 

so the element indexed by (r,s) in the Fisher information matrix can be expressed 
as 

ℑ𝑟𝑠
𝑅 (𝛅) =

1

2
𝑡𝑟 {𝐏(𝛅)

𝜕𝐕(𝛅)

𝜕𝛿𝑟
𝐏(𝛅)

𝜕𝐕(𝛅)

𝜕𝛿𝑠
} 

The detailed expressions for the partial derivatives of V with respect to the 
variance components used in the expression for scoring vectors and the Fisher 
information matrix have the following form: 

𝜕𝑽(𝛅)

𝜕𝜎1
2 = 𝐙1Ω1(𝜌1)𝐙1

𝑇,    
𝜕𝐕(𝛅)

𝜕𝜌1
= −𝜎1

2𝐙1𝛀1(𝜌1)
𝜕𝛀1

−1(𝜌1)

𝜕𝜌1
𝛀1(𝜌1)𝐙1

𝑇  

𝜕𝑽(𝛅)

𝜕𝜎2
2 = {𝛀2𝑑(𝜌2)}1≤𝑑≤𝐷

𝑑𝑖𝑎𝑔
   

𝜕𝑉(𝛅)

𝛿𝜌2
= 𝜎2

2 {
𝜕𝛀2𝑑(𝜌2)

𝜕𝜌2
}1≤𝑑≤𝐷

𝑑𝑖𝑎𝑔  
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where 
𝜕𝛀1

−1(𝜌1)

𝜕𝜌1
= −𝐖−𝐖𝑇 + 2𝜌1𝐖

𝑇𝐖, 

∂𝛀2𝑑(𝜌2)

𝜕𝜌2
=

1

1 − 𝜌2
2

(

  
 

        0           1 ⋯ ⋯ (𝑇 − 1)𝜌2
𝑇−2

       1           0     ⋱   (𝑇 − 1)𝜌2
𝑇−3

        ⋮           ⋱ ⋱                   ⋮
(𝑇 − 2)𝜌2

𝑇−3                  ⋱        0 1

(𝑇 − 1)𝜌2
𝑇−2     …        … 1        0 )

  
 
+
2𝜌2𝛀2𝑑(𝜌2)

1 − 𝜌2
2  

 

Finally, the scoring algorithm assumes that the variance component vector 
converges to the common value, using the following iterative procedure 

𝜹(𝑘+1) = 𝜹(𝑘) + ℑ𝑟𝑠
𝑅 (𝜹(𝑘))𝑆𝑅(𝜹

(𝑘)) 

4.  Determining the MSE of spatio-temporal estimates using 
parametric bootstrap method. 

The estimation of MSE of spatio-temporal estimator was determined using the 
parametric bootstrap method implemented in sae package. This method can be 
summarized as follows: 

1. Using direct income estimates and available auxiliary data {(�̂�𝑑𝑡
𝐷𝐼𝑅, 𝑥𝑑𝑡), 

t=1,..,T, d=1,…,D}, obtain the estimates of the STFH model described by 
the equations (1) - (4) together with the estimates of the model parameter 
β and δ. 

2. Generate bootstrap area effects {𝑢1𝑑
∗(𝑏)

, d=1,…,D } from the SAR(1) process 

given in (4), assuming (�̂�1
2, �̂�1) as true values of (𝜎1

2, 𝜌1) 

3. Independently of {𝑢1𝑑
∗(𝑏)

} and independently for each d, generate bootstrap 

time effects {𝑢2𝑑𝑡
∗(𝑏)

, t=1,…,T } from the AR(1) process given in (3), with 

(�̂�2
2, �̂�2) acting as true values of the parameters (𝜎2

2, 𝜌2) 

4. Calculate true bootstrap quantities, using the formula 

𝜃𝑑𝑡
∗(𝑏)

= 𝐱𝑑𝑡
𝑇 𝛽 + 𝑢1𝑑

∗(𝑏)
+ 𝑢2𝑑𝑡

∗(𝑏)
 

5. Generate errors 𝑒𝑑𝑡
∗(𝑏)

𝑁(0, 𝜓𝑑𝑡)~
𝑖𝑛𝑑  and obtain bootstrap data from the 

sampling model 

�̂�𝑑𝑡
𝐷𝐼𝑅∗(𝑏)

= 𝜃𝑑𝑡
∗(𝑏)

+ 𝑒𝑑𝑡
∗(𝑏)

 

6. Using the new bootstrap data {(�̂�𝑑𝑡
𝐷𝐼𝑅∗(𝑏)

, 𝑥𝑑𝑡), t=1,..,T, d=1,…,D} determine 

the estimates of STFH model described with equations from (1) to (4) and 
obtain the bootstrap EBLUPs 

�̂�𝑑𝑡
∗(𝑏)

= 𝐱𝑑𝑡
𝑇 �̂�∗(𝑏) + �̂�1𝑑

∗(𝑏)
+ �̂�2𝑑𝑡

∗(𝑏)
 

7. Repeat steps (1)-(6) for b = 1, ... ,B , where B is a large number. 
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8. The parametric bootstrap MSE estimates are given by 

𝑚𝑠𝑒(�̂�𝑑𝑡) =
1

𝐵
∑(�̂�𝑑𝑡

∗(𝑏)
− 𝜃𝑑𝑡

∗(𝑏)
)
2

𝐵

𝑏=1

 

5.  Results and discussion  

In the application, we were interested in the estimation of various per capita 
income components (in particular income from social-security benefits) by region 
NUTS2, based on the micro data coming from the Polish Household Budget 
Survey (HBS) and regional data obtained from the GUS Local Data Bank. Spatial 
and spatio-temporal models can fit to this kind of situations as they account for 
the correlation related to neighbourhood of areas and time-dependency, which 
both determine the random effects. They are based on cross-sectional and time-
series data involving spatial autocorrelation. The model-based approach generally 
improves the estimation quality due to the use of explanatory variables coming 
from administrative registers and area random effects, which additionally account 
for the variability between domains.  In current approach we can have extra gains 
coming from spatial and time dependencies between areas.  To obtain better 
estimates for the year 2013, we decided to utilize historical data coming from ten 
years before, which enabled “borrowing strength” not only across areas but also 
over time and space. The results obtained on the basis of these models were 
compared to the ones obtained from the classical Fay-Herriot model and to direct 
estimates.  

 At the first stage, direct estimates of both parameters of interest for 
16 regions were calculated from the HBS sample together with their standard 
errors obtained by means of the Balanced Repeated Replication (BRR) technique 
(see Westat (2007) for details). In the computations conducted in R-project 
environment, the packages sae, sae2 and spdep were applied. 

At the second stage, the appropriate models were formulated and estimated 
from the data, and finally, EBLUP estimates were obtained as well as their MSE 
estimates. In order to evaluate the possible advantages of the estimators 
obtained by means of Spatio-Temporal model (STFH) we also estimated the 
parameters of simpler small area models. In particular, we additionally estimated 
the parameters of the following small-area models: 

– Rao-Yu model (RY), (“borrowing strength” from areas and over time),  

– Spatial Fay-Herriot model (SFH), (“borrowing strength” only from other 
areas with proximity matrices, separately for each of them),  

– Fay-Herriot model  (FH), (“borrowing strength” only from other areas), 

and additionally, for comparison purposes,  we estimated the unknown 
parameters using: 

– classical spatial econometrics models based on SAR process, including 
spatial lag model (lagsar) and spatial error model (errorsar). 

At the third stage, using the model parameters which were estimated at the 
second stage, we obtained the predictors of per capita income for regions 
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in Poland. In particular, for the STFH, FH, SFH, RY models, the appropriate 
EBLUPs  were obtained, while for the spatial econometric models the appropriate  
linear predictors were evaluated. 

The sae package made it possible to obtain estimation for spatial related 
model and spatio-temporal model. The sae2 package includes the 
implementation of the estimation procedure for the Rao-Yu model (see Fay R.E., 
Li J. (2012), Li J., Diallo M.S., Fay R.E. (2012), Fay, R. E., Diallo, M., (2015)), 
which provides an extension of the basic type A model to handle time series and 
cross-sectional data (Rao, Molina (2015)). The spdep package (Bivand, R., 
Lewin-Koh, N., (2013), Bivand, R., Piras, G., (2015)) was used for estimation 
of classical spatial econometrics models and also Moran I statistics for the 
considered variables. Our own R macro was developed, performing calculations 
for ordinary EBLUP models, spatial EBLUP models, Rao-Yu models, classical 
econometric models and spatio-temporal models, model diagnostics, as well as 
the maps for regions.  

 

Table 1. Diagnostics of Rao-Yu and Spatio-Temporal models of income per 
 capita from social security benefits based on sample and administrative 
 data 

Model/ explanatory 
variable 

Coefficient 
estimates 

Standard 
error 

t-statistics p-value 

1. Rao-Yu model      𝜎2
2 = 111.410         𝜎1

2 =124.710           𝜌2=0.540 

Intercept 51.1520 16.7460 3.0546 0.0023 

Average salary in 
nat.economy 0.0168 0.0123 1.3680 0.1713 

Average retirements pay 0.1424 0.0236 6.0462 1.483E-09 

GDP per capita (Poland 
100%) -0.3314 0.1833 -1.8081 0.0706 

2. Spatio-temporal model     𝜎2
2 = 110.640    𝜎1

2 =88.691     𝜌1 =0.856        𝜌2=0.501 

Intercept 64.8670 21.3040 3.0448 0.0023 

Average salary in 
nat.economy 0.0261 0.0124 2.1052 0.0353 

Average retirements pay 0.1245 0.0237 5.2651 1.402E-07 

GDP per capita (Poland 
100%) -0.4945 0.1653 -2.9913 0.0028 

Source: Authors’ calculations based on the Polish Household Budget Survey and 
data from the Local Data Bank. 
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Table 2.  Estimation results for per capita income from social security benefits by 
 region in Poland for the year 2013 

Region 

Direct 
estimate 

1. Rao-Yu estimate 
2. Spatio-temporal 

estimate 

Value REE Value REE 

Time-
related 
random 
effect 

Value REE 

Time-
related 
random 
effect 

zł. % zł. % zł. zł. % zł. 

Dolnośląskie 401.58 4.28 375.83 2.75 16.936 375.66 2.55 15.951 

Kujaw. Pomor. 329.55 3.69 327.55 2.64 9.699 326.43 2.34 10.640 

Lubelskie 282.68 3.50 298.15 2.65 -20.880 298.20 2.78 -20.569 

Lubuskie 333.49 6.70 346.87 3.24 11.211 346.04 3.17 9.664 

Łódzkie 354.50 2.97 350.90 2.31 9.263 350.10 2.14 9.794 

Małopolskie 305.97 3.74 320.03 2.63 -13.364 319.93 2.43 -13.158 

Mazowieckie 335.47 3.23 339.16 2.41 -7.202 338.44 2.44 -5.301 

Opolskie 342.17 5.89 343.94 3.30 -4.882 345.93 2.82 -6.008 

Podkarpackie 292.47 3.41 299.82 2.57 -9.169 299.47 2.63 -8.394 

Podlaskie 325.53 5.03 323.70 3.00 3.633 322.50 2.95 4.609 

Pomorskie 320.82 5.62 326.00 3.25 -5.475 325.55 3.43 -4.576 

Śląskie 395.95 2.86 404.36 2.16 -7.007 403.70 2.30 -6.054 

Świętokrzyskie 329.61 4.49 329.70 2.89 4.471 329.32 3.07 4.145 

Warm.-Mazur. 297.09 5.83 306.51 3.45 -5.081 304.95 3.88 -3.562 

Wielkopolskie 290.97 2.48 297.73 2.10 -21.435 298.20 2.23 -22.928 

Zach.-pomor. 333.86 7.52 335.91 3.39 -5.610 336.01 3.49 -5.285 

Source: Authors’ calculations based on the Polish Household Budget Survey and 
data from the Local Data Bank. 
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Figure 1.  Pair scatterplots of direct and model-based estimates for per capita 
 income from social security benefits by region in Poland for the years 
 2003–2013  

  

Source: Authors’ calculations based on the Polish HBS and Local Data Bank. 

Table 3.  Variance structure parameters of selected small area and econometric 
 models together with their log likelihoods for per capita income from 
 social security benefits by region in Poland for the years 2003–2013  

Year 

Fay-Herriot model  Spatial Fay-Herriot model Spatial SAR error model  

𝜎1
2 

Log 
likeli-
hood 

𝜎1
2 𝜌 

Log 
likeli-
hood 

𝜎2 λ 
Log 

likeli-
hood 

2003 93.82 -61.95 43.34 0.961 -62.56 92.38 0.572 -59.69 

2004 223.00 -66.34 146.24 0.829 -66.02 184.78 0.523 -65.09 

2005 118.48 -62.76 116.01 0.371 -62.93 153.29 0.058 -62.97 

2006 38.29 -59.62 42.75 0.342 -59.88 117.54 0.309 -61.04 

2007 275.76 -68.37 245.69 0.625 -68.24 215.60 0.600 -66.56 

2008 261.88 -69.35 205.51 0.826 -69.98 355.35 0.401 -70.03 

2009 318.67 -69.02 273.93 -0.411 -68.40 215.58 -0.953 -67.39 

2010 202.88 -68.20 196.06 -0.130 -68.07 247.33 -0.646 -67.54 

2011 133.95 -66.56 113.34 0.702 -66.78 302.40 0.302 -68.59 

2012 558.55 -73.16 551.95 -0.047 -73.09 497.60 -0.341 -72.59 

2013 615.95 -74.11 421.61 -0.693 -72.86 369.39 -0.903 -71.51 

Source: Authors’ calculations based on the Polish HBS and Local Data Bank. 
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In Table 1 we show estimation results obtained for the Rao-Yu and spatio-
temporal STFH model (eq.:(1)-(4)). For each dependent variable the estimates 
of fixed effects β and the parameters of variance-covariance structure of the 
models denoted as δ are presented. The model diagnostics indicate that both 
parameters related to the variability of random effects (σ) have visible contribution 
to the variability of the model. This is in contrast with previously presented models 
(see Jędrzejczak, Kubacki (2016)), where for the model of available income this 
variability was mostly determined by time-related component. It should be noted 
that a similar comparison of small area-models of available income also revealed 
such relationships for the Rao-Yu and spatio-temporal models, which may mean 
that both these approaches are complementary.  Figures 5 and 6 additionally 
show decompositions of time-related random effects of the Rao-Yu and STFH 
models and make it possible to observe the impact and the distribution of these 
effects over time. Figure 1 summarizes dependencies between all pairs 
of estimates obtained in the study over the analysed period by means of the 
Pearson correlation coefficients and scatterplots. 

 In Table 2 there are income estimates, their corresponding relative estimation 
errors (REE) and  time-related random effects u2.  Covariance structure 
parameters together with log likelihoods for all the years and selected models are 
given in Table 3. In the table, for comparison purposes, also the spatial SAR error 
model was provided due to identical assumptions about spatial random effects. 

Precision of different estimation methods can be analysed on the basis of the 
detailed results given in Tables 4-6 and in Figures 2-4. The tables show 
Consistency Coefficients (CC), Relative Estimation Errors (REE) and REE 
reduction, respectively. The consistency coefficients presented in Table 4 and 
Figure 2 can be defined as follows 

𝐶𝐶𝑑𝑡 = (𝜃𝑑𝑡
𝑚𝑜𝑑𝑒𝑙 − �̂�𝑑𝑡

𝐷𝐼𝑅)/�̂�𝑑𝑡
𝐷𝐼𝑅 

This measure can be used as a simple approximation of bias of model-based 
estimates. The results given in Table 4 and Figure 2 indicate that simpler 
estimation techniques may be less biased than the more complicated ones (Rao-
Yu and STFH models). It seems that introducing more assumptions about the 
random-effects not always reflects the real-world relationships. Special attention 
should be paid to the values of CC obtained for econometric spatial error (SAR) 
model, which confirm that the classical spatial econometric models may be 
insufficient for small area estimation (Figure 2).  

In Table 5, REE values for different estimation techniques are summarized, 
while in Table 6 REE reduction is presented with respect to both: direct and 
ordinary EBLUP estimates, corresponding to the first and the second column for 
each model. This approach can be helpful to recognise efficiency gains coming 
from model-based estimation and additional gains coming from temporal (and 
spatial) correlation incorporated in more advanced small area models. 

Comparisons of the distributions of REE and REE reduction (Figure 3 and 
Figure 4) show that all the considered model-based techniques are significantly 
more efficient than the corresponding direct ones. The Rao-Yu model and spatio-
temporal model STFH perform similarly, as compared to the other model-based 
techniques which have been considered in the study. This regularity can also be 
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observed when a comparison between a spatial, spatio-temporal and Rao-Yu 
models in terms of REE Reduction related to the ordinary EBLUPs is made.  

Table 4. Consistency Coefficients [in %] for model-based estimates related to 
 direct estimates for per capita income from social security benefits by 
 region in Poland for the year 2013  

Region 

Consistency coefficient [in %] 

Fay-Heriot 

EBLUP 

 

Spatial Fay-
Herriot 

EBLUP 

 

Rao-Yu 
EBLUP 

 

Spatio-
temporal 
EBLUP 

Dolnośląskie -4.759 -4.620 -6.413 -6.455 

Kujaw. Pomor. -0.549 -0.049 -0.606 -0.948 

Lubelskie 1.052 0.544 5.474 5.492 

Lubuskie -2.020 -3.089 4.013 3.762 

Łódzkie -1.384 -1.501 -1.017 -1.241 

Małopolskie 1.520 1.803 4.594 4.563 

Mazowieckie 0.263 0.150 1.101 0.885 

Opolskie -0.844 -2.366 0.518 1.098 

Podkarpackie 0.397 0.688 2.511 2.395 

Podlaskie -1.370 -1.182 -0.562 -0.931 

Pomorskie 1.287 2.550 1.615 1.474 

Śląskie 0.251 0.185 2.123 1.958 

Świętokrzyskie -1.437 -1.473 0.028 -0.089 

Warm.-Mazur. 1.673 1.149 3.171 2.646 

Wielkopolskie 1.115 1.065 2.324 2.485 

Zach.-pomor. -0.752 0.979 0.61 0.645 

Source: Authors’ calculations based on the Polish HBS and Local Data Bank. 
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Figure 2.  Pair scatterplots for CC obtained for different model-based estimates 

 

Source: Authors’ calculations based on the Polish HBS and Local Data Bank. 

Table 5.  Estimates of REE [in %] for different estimates of income per capita 
 from social security benefits by voivodships for the year 2013 

Region 

Relative estimation error [in %] 

Direct 
Fay-Heriot 

EBLUP  

Spatial 
Fay-

Herriot 
EBLUP 

Rao-Yu 
EBLUP 

Spatio-
temporal 
EBLUP 

Dolnośląskie 4.28 3.96 4.10 2.75 2.55 

Kujaw. Pomor. 3.69 3.50 3.67 2.64 2.34 

Lubelskie 3.50 3.39 3.63 2.65 2.78 

Lubuskie 6.70 5.61 5.91 3.24 3.17 

Łódzkie 2.97 2.88 3.04 2.31 2.14 

Małopolskie 3.74 3.48 3.68 2.63 2.43 

Mazowieckie 3.23 3.27 3.46 2.41 2.44 

Opolskie 5.89 4.96 5.39 3.30 2.82 

Podkarpackie 3.41 3.28 3.48 2.57 2.63 

Podlaskie 5.03 4.58 4.86 3.00 2.95 

Pomorskie 5.62 4.85 4.87 3.25 3.43 

Śląskie 2.86 2.90 3.07 2.16 2.30 

Świętokrzyskie 4.49 4.15 4.48 2.89 3.07 

Warm.-Mazur. 5.83 5.04 5.24 3.45 3.88 

Wielkopolskie 2.48 2.44 2.52 2.10 2.23 

Zach.-pomor. 7.52 5.75 5.72 3.39 3.49 

Source: Authors’ calculations based on the Polish HBS and Local Data Bank. 
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Figure 3.  Distribution of estimated relative estimation errors (REE) for different 
 estimation methods (direct and model-based) 

 

Source: Authors’ calculations based on the Polish HBS and Local Data Bank. 

Table 6. REE Reduction for income per capita from social security benefits 
 related to the direct and FH estimates by voivodships for the year 2013 

Region 

FH 
EBLUP 

SFH  EBLUP RY EBLUP STFH EBLUP 

REE 
reduction 

REE 
reduction 

Spatial 
REE 

reduction 

REE    
reduction 

Spatio-
temporal 

REE 
reduction 

REE 
reduction 

Spatio-
temporal 

REE 
reduction 

Dolnośląskie 1.0796 1.0431 0.9662 1.5575 1.4427 1.6802 1.5563 

Kujaw. Pomor. 1.0549 1.0066 0.9542 1.4010 1.3281 1.5798 1.4976 

Lubelskie 1.0342 0.9663 0.9344 1.3231 1.2794 1.2593 1.2177 

Lubuskie 1.1946 1.1339 0.9491 2.0684 1.7314 2.1127 1.7685 

Łódzkie 1.0312 0.9775 0.9479 1.2860 1.2471 1.3863 1.3444 

Małopolskie 1.0756 1.0154 0.9440 1.4191 1.3193 1.5359 1.4279 

Mazowieckie 0.9874 0.9330 0.9449 1.3415 1.3587 1.3272 1.3442 

Opolskie 1.1858 1.0916 0.9206 1.7817 1.5026 2.0906 1.7631 

Podkarpackie 1.0403 0.9813 0.9432 1.3257 1.2743 1.2957 1.2455 

Podlaskie 1.0974 1.0335 0.9418 1.6770 1.5281 1.7060 1.5546 

Pomorskie 1.1588 1.1536 0.9955 1.7287 1.4918 1.6369 1.4126 

Śląskie 0.9882 0.9335 0.9446 1.3267 1.3425 1.2450 1.2599 

Świętokrzyskie 1.0812 1.0026 0.9273 1.5520 1.4354 1.4598 1.3501 

Warm.-Mazur. 1.1570 1.1122 0.9613 1.6911 1.4617 1.5039 1.2999 

Wielkopolskie 1.0156 0.9858 0.9706 1.1819 1.1637 1.1118 1.0947 

Zach.-pomor. 1.3075 1.3141 1.0051 2.2186 1.6969 2.1542 1.6476 

Source: Authors’ calculations based on the Polish HBS  and Local Data Bank. 
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Figure 4.  Distribution of REE Reduction (left) and REE Reduction due to 
 spatio-temporal effects (right) for different model-based estimation 
 methods 

  

Source: Authors’ calculations based on the Polish HBS and Local Data Bank. 

 

Figure 5.  Choropleth maps for spatial random effects of Spatial Fay-Herriot 
 model (left) and Spatio-Temporal model (right) for per capita income 
 from social security benefits by region  

Source: Authors’ calculations based on the Polish HBS and Local Data Bank. 
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Figure 6.  Distributions of random time-related effects for RY model (top-left), 
 and STFH model (bottom-left) and the scatterplot (right) for time-
 related effects (u2)  for STFH and Rao-Yu model. 

  

Source: Authors’ calculations based on the Polish HBS and Local Data Bank. 

 
The maps presented in Figure 5 show the spatial structure of space-related 

random effects. It can be noticed that for the spatial models under consideration 
(but not for all years) significant spatial relationships are obtained. Note that such 
a behaviour becomes evident for the regions where higher spatial autoregression 
coefficients are observed, i.e. for north-western and south-eastern regions. This 
confirms the well-known relationships of regional differences in Poland and is 
obviously connected with higher industrialization of these voivodships (which may 
cause larger income from social security benefits). Similar conclusions were 
made in Kubacki and Jędrzejczak (2016), where spatial relationships for small 
area models in Polish counties were presented.  

Interesting relationships can be observed when comparing the distributions of 
time-related random effects obtained for the Rao-Yu model and for the spatio-
temporal model, as illustrated in Figure 6. Here some consistency between time-
related random effects is noticeable. It results from the fact that in the STFH 
model as well as in the Rao-Yu model they follow the autoregressive process of 
the first order, AR(1). This regularity can also be observed in the distributions of 
random effects presented for each year and in the scatterplot obtained for all the 
years. Note that the values of random effects related to time were determined by 
different estimators, and calculated using different software (in particular sae and 
sae2 packages).  

Some consistency can also be observed for REE and REE reduction 
distributions (Fig. 3, Fig. 4), obtained for the Rao-Yu and spatio-temporal models. 
It should be noted, however, that the methods used to obtain the REE values for 
these models were also different. In the case of the Rao-Yu model, the method 
applied for MSE estimation was based on extensions of the Prasad and Rao 
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(1990) approach, while in the case of spatio-temporal model it was based on the 
parametric bootstrap technique. Of course, these methods have different 
implementations, which may indicate that they are convergent. Such relationships 
were also obtained for other income-related variables. 

6. Conclusions 

The paper shows a procedure of efficient estimation for small areas based on 
the application of a spatio-temporal model, i.e. the general linear mixed model 
with spatially correlated random effects and significant correlation over time. 
In particular, spatial Simultaneous Autoregressive Process, using spatial 
neighbourhood as auxiliary information, and AR(1) process for time-related 
random effects, were incorporated into the estimation.  

The presented spatio-temporal model improves the precision of small-area 
estimates not only in relation to direct estimates, which is easy to obtain, but also 
in comparison with other indirect techniques based on small-area models, also 
spatial small area models and sometimes the Rao-Yu model. 

The efficiency of the proposed method was proven based on real-world 
examples prepared for the Polish data coming from the Household Budget Survey 
and the administrative data. The detailed comparison of relative estimation errors 
and REE reductions shows that all the considered model-based techniques are 
significantly more efficient than the direct estimation one, yet the spatio-temporal 
and the Rao-Yu models provide greater REE reduction than the others. The 
calculations, where some additional assumptions on the spatial relationships were 
made, also confirm efficiency gains of the estimators. However, such a 
correspondence does not always occur for all the years, so one should be 
conscious that for lower ρ2 values the benefit of using the spatial method may be 
ambiguous.  

It is worth pointing out that the number of observations used to fit the area-
level models was small so the model parameters were estimated with less 
efficiency and therefore the efficiency gains with respect to direct estimators were 
obviously smaller than under the unit level models. What is more, the applied 
models require normality of random effects for MSE estimation and violating this 
assumption can seriously affect the results.  

A more detailed analysis also reveals some correspondence between the 
Rao-Yu model and spatio-temporal models induced by identical assumptions 
about the stochastic process for time-related random effects. Further benefits can 
be expected when time-dependent nonlinear relationships are taken into account, 
for example nonlinear dependence on explanatory variables. The previously 
performed analysis of nonlinear models (see Jędrzejczak, Kubacki (2016), 
Jędrzejczak, Kubacki (2017)) may be a starting point for more detailed 
comparisons between the Rao-Yu method, nonlinear models and econometric 
panel models. 
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APPENDIX 

Simple R code illustrating the computations 

# reading the libraries 

library(RODBC) 

library(sae2) 

library(sae) 

library(maptools) 

library(spdep) 

 

# obtaining the proximity matrix 

region.poly <- readShapePoly("Polish_regions") 

region.nb   <- poly2nb(region.poly) 

W <- nb2mat(wojew.nb, style = "W") 

# reading the data from Excel spreadsheet  

channel <- odbcConnectExcel2007("Input.xlsx",sep="") 

command <- paste("select * from [Sheet1$] order by region,year", sep="") 

base <- sqlQuery(channel, command) 

d <- cbind(base,desvar=(base[,3])^2)   

# please note that position of variance (or standard error) variable in Input file 

may be different for particular case 

# variable for number of domains 

D <- 16 

# variable for number of time periods 

T <- 11 

# formula for particular model - see for example Table 1 

formula <- "D905_AVG ~ PRZECGOSP + PRZECEMER + PKB_PC" 

 

# obtaining the Rao-Yu estimates 

resultT.RY <- eblupRY(as.formula(formula), D, T, vardir = 

diag((base[,3])^2),data=base, ids=base$region, method="REML") 

# obtaining the decomposition of random effects for Rao-Yu model 
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resultT.RY_RE <- eblupRY_randeff_1d(formula, D, T, vardir = diag((base[,3])^2), 

data=base, delta = resultT.RY$delta) 

# obtaining the spatio-temporal estimates 

resultST <- eblupSTFH(as.formula(formula), D, T, desvar, W, data=d) 

# obtaining the MSE valus for spatio-temporal model using the parametric 

bootstrap procedures 

resultPBST <- pbmseSTFH(as.formula(formula), D, T, desvar, W, data=d) 

# obtaining the decomposition of random effects for spatio-temporal model 

resultST_RE <- eblupSTFH_randeff(as.formula(formula), D, T, vardir = 

(base[,3])^2, W, data=d, rho1 = resultST$fit$estvarcomp[2,1], rho2 = 

resultST$fit$estvarcomp[4,1], sigma21 = resultST$fit$estvarcomp[1,1], sigma22 = 

resultST$fit$estvarcomp[3,1]) 

. 
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ABSTRACT 

The aim of the paper is to review and compare the processes of population ageing 
in Polish urban areas. The study presents a novel approach to the problem, 
because in addition to measuring this phenomenon according to the National 
Official Register of the Territorial Division of the Country (TERYT) classification, it 
also measures population ageing according to the classification for urban areas 
(LAU 2 units) – Degree of Urbanisation (DEGURBA). Several traditional 
demographic measures for population ageing were applied, such as the median 
age, parent support ratio, ageing index, elderly dependency ratio, share of people 
aged 65 and older, and total dependency ratio. Also, Chu’s alternative measure of 
population ageing accompanied by a dynamic version of ageing index was 
computed. The values of these indicators for 2016 were compared with those for 
2010. The authors carried out a more detailed analysis of the differences between 
the ageing of populations in urban areas according to the degree of urbanization 
(DEGURBA), and compared the outcome with the results of the TERYT-based 
measurement (the traditional administrative territorial division). The comparison of 
the outcomes of both the above-mentioned ways of measuring the phenomenon of 
population ageing showed discrepancies, namely the ageing process measured 
according to the DEGURBA typology proved to be less intensive than the same 
process assessed according to the TERYT typology. This indicates that there are  
differences between the statistical pictures of population ageing in urban areas 
depending on whether demographical and morfological aspects are taken into 
consideration or not. 

Key words: TERYT classification, DEGURBA typology, urban statistics, urban 

ageing. 

1.  Introduction 

One of the most important demographic problems encountered by every 
country in the world is population ageing. It is commonly defined as the increasing 
share of older persons in the population. According to World Population 
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Prospects: the 2017 Revision “the global population aged 60 years or over 
numbered 962 million in 2017, was more than twice as large as in 1980 when 
there were 382 million older persons worldwide. The number of older persons is 
expected to double again by 2050, when it is projected to reach nearly 2.1 billion”. 
When one takes into account the rural-urban perspective it is worth pointing out 
that “the number of older persons is growing faster in urban areas than in rural 
areas. At the global level between 2000 and 2015, the number of people aged 
60 years or over increased by 68% in urban areas, compared to a 25% increase 
in rural areas. As a result, older persons are increasingly concentrated in urban 
areas. In 2015, 58% of the world’s people aged 60 years or over resided in urban 
areas, up from 51% in 2000. Those aged 80 years or over are even more.” 
(United Nations, 2017).  

According to Population Projection 2014-2050 (GUS, 2014) the share of 
population aged 65 years and over in Poland will amount to 26.3% in urban areas 
in 2035 compared to 22% in rural areas. However, there will be a lot of regional 
variation in population ageing. 

The urban perspective on different phenomena is of special importance for 
the Centre for Urban Statistics – a unit dealing with statistics related to cities, 
towns and urban areas in the Statistical Office in Poznań. It was established as 
part of the specialization strategy, implemented in Polish official statistics at the 
start of 2009. The main idea of the specialization strategy was to make each 
regional office responsible for conducting tasks for the whole country within 
specific fields. In other words, the regional offices were no longer limited to 
collecting data from a single province. Since its creation, the tasks of the Centre 
for Urban Statistics have focused on initiating surveys and formulating new 
methodological proposals for the statistical observation of cities and towns as well 
as conducting methodological studies aimed at delimiting and surveying areas 
that do not overlap with the country’s administrative division. 

One of the most up-to-date challenges for official statistics is to call for a more 
flexible approach to the perception of the city as an important spatial element, 
especially now that the shortcomings of spatial analyses based solely on units of 
administrative division (TERYT system) or statistical division (NUTS classification) 
can no longer be ignored. In this context, the grid concept (a network of grid 
squares, with a certain spatial resolution, e.g. 500x500 m, or 1x1 km) is especially 
relevant, making it possible to depart from the fixed administrative division and 
analyse phenomena both within urban structures (Dąbrowski et al., 2016; Filas-
Przybył et al., 2016) and across administrative city borders – e.g. urban functional 
zones. For example, the 1x1 km grid network serves as the basis for the 
European classification of administrative units, which is used to determine the 
degree of urbanization – DEGURBA (Dijkstra and Poelman, 2014). 

The purpose of the article is to compare the statistical picture of the ageing 
process of the urban population in Poland using two typologies. One of them is 
based on the definition of a town in the Act of 29 August 2003 on official names of 
localities and physiographic objects. The second typology used in this study is the 
European classification of administrative units based on the degree of 
urbanization – DEGURBA.  

In the second part of the article both TERYT and DEGURBA classification 
were described in more detail. The definition of town/city used in the TERYT 
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classification and the description of DEGURSBA’s densely, intermediate and 
thinly populated areas were introduced. The aim of the next part of the paper was 
to introduce, present formulas and to discuss some properties of population 
ageing measures used in the research. These were: median age, parent support 
ratio, ageing index, elderly dependency ratio, proportion of population aged 65 
and over (% of total), total dependency ratio. Additionally, we computed Chu’s 
alternative measure of population ageing (Nath and Islam, 2016) and dynamic 
version of ageing index proposed by Długosz (Długosz, 1998). The selection of 
these demographic measures was motivated partly by previous studies on this 
topic (GUS, 2015). The comparison of the statistical picture of population ageing 
from TERYT and DEGURBA perspective was presented in the fourth part of the 
paper. In order to track changes over time, the data for 2016 are compared with 
those for 2010 (assuming that in 2010 the DEGURBA classification was the same 
as in 2016), which, in both cases, come from the Local Data Bank maintained by 
Statistics Poland. Also, some discussion describing the significance of main 
findings in light of what was already known about the population ageing was 
provided at the end of this part of the paper. In the conclusions we included not 
only the main findings of the research but also possible directions of future works.  

2. TERYT and DEGURBA typologies – comparison 

Official statistics for cross-classification domains at different levels of territorial 
aggregation are calculated and presented in Poland on the basis of the TERYT 
register. It consists of four components: TERC – identifiers and names of 
territorial units, SIMC – identifiers and names of localities, BREC – statistical 
regions and enumeration areas, and NOBC – address details of streets, 
properties, buildings and dwellings. The TERC system contains identifiers and 
names of units that constitute the three-tier territorial division of the country: 
province, district, commune (municipality). The territorial code of every commune 
consists of 7 digits. The first two denote the province where the commune is 
located, the first four denote the district, while the last digit represents the 
commune type. Codes, commune types and their descriptions in the TERYT 
system are presented in detail on the Statistics Poland website 
https://bdl.stat.gov.pl/BDL/metadane/teryt/rodzaj. 

In official statistics the town/city is defined as a unit of territorial division which 
has been granted town status by a municipal charter (cf. The Act on official 
names…, 2003 Article 2, Item 3). According to the regulation, this includes urban 
communes and towns in urban-rural communes. Analogically, rural communes 
and rural parts of urban-rural communes are classified as villages. However, 
spatial analyses based solely on the legal/administrative classification of territorial 
units in the TERYT register often result in a distorted picture of phenomena and 
processes taking place inside administrative units or between neighbouring units. 
What is needed, then, is an analytical approach based on the concept of 1x1 km 
grid and the DEGURBA classification.  

DEGURBA – the European classification, based on the degree of 
urbanization, was first implemented in 1991 in order to characterize areas 
inhabited by respondents of official statistical surveys. This original DEGURBA 
typology distinguished between three kinds of areas: densely populated, 

https://bdl.stat.gov.pl/BDL/metadane/teryt/rodzaj


138                                            T. Klimanek, S. Filas-Przybył: The impact of the applied… 

 

 

intermediate and thinly populated (Eurostat, 2011). Their definition was based on 
population size, population density and geographical contiguity of LAU2 units. 
However, even at that time it became obvious that the approach based on LAU2 
units, whose area varied considerably across EU countries, leads to distorted 
results and limits the scope of comparative analyses between EU countries. 

In 2010 Eurostat introduced a new regional typology, which originated from a 
method developed by OECD (Berezzi et al., 2011). The method was based on 
grid square cells of 1 km2, which in combination with the results of another Urban 
Audit project, provided an opportunity to revise the definition, borders and number 
of cities according to the idea of a densely populated area used in the degree of 
urbanization classification.  

The new typology of areas (Dijkstra and Poelman, 2014) based on their 
degree of urbanization introduces the following classification of LAU2  statistical 
units (the brackets on the left contain DEGURBA codes): 

(1) densely populated area: (alternative name: city/large urban area) 

– at least 50% lives in high-density clusters; 

(2) intermediate area (alternative name: towns and suburbs/small urban area) 
– less than 50% of the population lives in rural grid cells; and 
– less than 50% lives in high-density clusters; 

(3) thinly populated area (alternative name: rural area): 
– more than 50% of the population lives in rural grid cells. 

In the above, the following definitions are used: 

 Rural grid cells: grid cells outside urban clusters. 

 Urban clusters: clusters of contiguous grid cells of 1 km2 with a density of 
at least 300 inhabitants per km2 and a minimum population of 5000. 

 High-density cluster: contiguous grid cells of 1 km2 with a density of at 
least 1500 inhabitants per km2 and a minimum population of 50000 

(alternative names: urban centre or city centre). 

Details of the methodology of establishing the DEGURBA typology can be 
found in the publications (Dijkstra and Poelman, 2014; Eurostat, 2011). 

Application of DEGURBA classification requires an appropriate statistical and 
IT infrastructure to ensure regular updating of information for the delimitation of 
densely-populated, intermediate and thinly populated areas. It was assumed that 
information about changes in LAU borders would be updated annually (Eurostat, 
2011). A more challenging problem is how to update the spatial distribution of the 
population. Censuses, which are the main source of data required for the 
DEGURBA classification, are conducted every 5 or 10 years. The choropleth 
maps below show the classification of LAUs (communes) according to the TERYT 
register and the DEGURBA typology. 
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Figure 1.  Classification of LAUs (communes) according to the TERYT register 
(left) and the DEGURBA typology based on data from Census 2011 
(right) 

A simple comparison of the number of towns according to the definition used 
in the TERYT register and the number of areas classified as urban according to 
the DEGURBA typology (densely populated and intermediate areas, codes 1 and 
2, respectively) indicates significant discrepancies. There are 930 towns in the 
TERYT register, compared to only 601 urban units according to the DEGUBRA 
typology. 

3. Population ageing measures 

The problem of population ageing in Poland, its regional variation (Kurek, 
2008, Stańczak and Szałtys, 2016; Podogrodzka 2016, Majdzińska, 2017), and 
the way it affects Polish towns (Kurek, 2008, Trzpiot and Ojrzyńska, 2014; Trzpiot 
and Szołtysek 2015; GUS, 2018) is becoming increasingly relevant in public 
awareness and discourse. The advancement in population ageing is measured by 
means of various indicators: either traditional ones, based on the threshold of 
population ageing and relations between basic age groups, or less common, 
alternative measures, which take into account changing mortality rates and life 
expectancy (Abramowska-Kmon, 2011).  

In this study, the statistical picture of population ageing in Polish towns 
according to the TERYT and DEGURBA typologies was compared on the basis of 
median age and the following demographic measures: 

1. Parent support ratio 

𝑃𝑆𝑅 =
𝐿85+

𝐿50−64
∗ 𝐶         (1) 

where: 
𝑃𝑆𝑅 – parent suport ratio 

𝐿85+ – number of people aged 85 and over 
𝐿50−64 – number of people aged 50-64 

𝐶 – constant (=100) 
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2. Ageing index 

𝐴𝐼 =
𝐿65+

𝐿0−14
∗ 𝐶         (2) 

where: 
𝐴𝐼 – ageing index 

𝐿65+ – number of people aged 65 and over  
𝐿0−14 – number of people aged 0–14 

𝐶 – constant (=100) 

By 2045 AI is predicted to exceed 100 in all European countries, which will 
mean the elderly population will outnumber the youngest one (Kurek, 2008). 

3. Elderly dependency ratio 

𝐸𝐷𝑅 =
𝐿65+

𝐿15−64
∗ 𝐶        (3) 

where: 
𝐸𝐷𝑅 – elderly dependency ratio 

𝐿65+ – number of people aged 65 and over 

𝐿15−64 – number of people aged 15-64 
𝐶 – constant (=100) 

4. Proportion of elderly people 

𝑃𝐸𝑃 =
𝐿65+

𝐿
∗ 𝐶         (4) 

where: 
𝑃𝐸𝑃 – proportion of elderly people 
𝐿65+ – number of people aged 65 and over 

𝐿 – total population 

𝐶 – constant (=100) 

According to UN data (Abramowska-Kmon, 2011), a population is considered 
young when the share of people aged 65 and over is below 4%. A population is 
classified as mature when this share ranges from 4% to 7%, and is regarded as 
old when it exceeds 7%3. 

5. Total dependency ratio 

𝑇𝐷𝑅 =
𝐿0−14 + 𝐿65+

𝐿15−64
∗ 𝐶        (5) 

where: 
𝑇𝐷𝑅 – total dependency ratio 
𝐿0−14 – number of people aged 0-14 

𝐿65+ – number of people aged 65 and over 

𝐿15−64 – number of people aged 15-64 

𝐶 – constant (=100) 

                                                           
3 However, the UN scale seems to have now only historical meaning, as noted by Abramowska-Kmon. 
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6. Chu’s indices based on general formula (Chu, 1997) 

𝐼𝛼
𝑃(𝐺: 𝑧) =

1

(𝜔−𝑧)𝛼−1 ∫ [𝐺−1(𝑝) − 𝑧]𝛼−11

𝐺(𝑧)
𝑑𝑝     (6) 

where: 
𝐺(𝑎) – cumulative distribution function for age a 

𝐺−1(𝑝) – the age of population corresponding to cumulative probability p 
value 

𝑧 – critical value of peak age, here z = 65 

𝜔 – upper limit of age distribution, here 𝜔 = 90 

For 𝛼 = 1 we have the so-called conventional peak ageing index 

𝐼1
𝑃(𝐺: 𝑧) = ∫ 𝑑𝑝

1

𝐺(𝑧)
        (7) 

For 𝛼 = 2 we have the so-called aged gap ageing index 

𝐼2
𝑃(𝐺: 𝑧) =

1

(𝜔−𝑧)
∫ [𝐺−1(𝑝) − 𝑧]

1

𝐺(𝑧)
𝑑𝑝      (8) 

And for 𝛼 = 3 we have the so-called age distribution sensitive ageing index 

𝐼3
𝑃(𝐺: 𝑧) =

1

(𝜔−𝑧)2 ∫ [𝐺−1(𝑝) − 𝑧]21

𝐺(𝑧)
𝑑𝑝     (9) 

If we have, for example, data in the form of 5-year age groups, the discrete 
case general formula is the following: 

𝐼𝛼
𝑃(𝐺: 𝑧) =

1

(𝜔−𝑧)𝛼−1
∑ (𝑥𝑗 − 𝑧)

𝛼−1
𝑗 𝑝𝑗      (10) 

where: 
𝑥𝑗 – is the mid-point of j-th age group 

𝑧 – critical value of peak age, here 𝑧 = 65. Age groups are then 65–69,  

  70–74, 75–79, 80–84, 85+. For 85+ age group 𝜔 = 90 was taken arbitrarily 
  as the upper bound. 

From the above mentioned indices we will use only 𝐼2
𝑃. The aged gap ageing 

index is the weighted proportion of old with weights which are differences 
between the corresponding age of these old and the critical age 𝑧.  

7. Długosz’s dynamic version of ageing index (Długosz, 1998; Długosz 2003) 

𝑊𝑆𝐷 = [𝑈(0 − 14)𝑡 − 𝑈(0 − 14)𝑡+𝑛] + [𝑈(> 65)𝑡+𝑛 − 𝑈(> 65)𝑡]  (11) 

where: 
𝑊𝑆𝐷 – ageing index 

𝑈(0 − 14)𝑡 – share of population aged 0–14 in 2010 

𝑈(0 − 14)𝑡+𝑛 – share of population aged 0–14 in 2016 

𝑈(> 65)𝑡 – share of population aged 65 and over in 2010 
𝑈(> 65)𝑡+𝑛 – share of population aged 65 and over in 2016 

 
Długosz’s dynamic version of ageing index indicates the differences in the 

percentage share of the youngest and the oldest group in the period studied. It 
could be useful for building the typology of population based on the mutual 
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relation between the changes in the share of population in the age groups of 0–14 
and >65. There are eight theoretical types (A-H) of population ageing (for 
example type A denotes population becoming younger due to the domination of 
an increase in the share of population aged 0–14 over the increase in the share of 
population aged>65, while type H denotes population ageing due to the 
domination of the increase in the share of population aged >65 over the increase 
in the share of population aged 0–14). 

4. Statistical picture of population ageing in Polish towns – regional 
comparison and discussion 

The impact of the typology used (TERYT vs DEGURBA) on the statistical 
picture of population ageing in Polish towns was evaluated taking into account the 
following assumptions: 

– as regards the TERYT classification, the analysis included urban 
communes and towns in urban-rural communes (TERYT code = 1 or 4); 

– as regards the DEGURBA classification, the analysis included urban areas 
(communes) characterized as densely populated or intermediate areas 
(DEGURBA code = 1 or 2); 

– the selected territorial units (towns according to TERYT, urban areas 
according to DEGURBA) were characterized in terms of median age and 
selected measures of population ageing (parent support ratio, ageing 
index, elderly dependency ratio, proportion of elderly people, total 
dependency ratio, Chu’s measure of population ageing and dynamic 
version of ageing index);  

– analysis was based on official statistics from the Local Data Bank 
maintained by Statistics Poland; 

– the analysis of population ageing was conducted for 2010 and 2016; 
– the same DEGURBA typology was used for both reference years based on 

population counts established in the last census (NSP 2011) and LAUs 
updated in 2016. 

Table 1.  Classification of communes according to TERYT and DEGURBA 
in 2016 

 

Urban 
commune 

Rural 
commune 

Urban-rural 
commune 

Total 

Densely populated area 74 0 0 74 

Intermediate area 207 84 236 527 

Thinly populated area 22 1475 380 1877 

Total 303 1559 616 2478 

Source: Own elaboration. 
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According to the TERYT classification, there were 919 towns out of a total of 
2478 communes, 303 of which were urban communes, while 616 were towns 
located in urban-rural communes. The number of urban areas according to the 
DEGURBA classification amounted to 601 (74 LAU2 were classified as densely 
populated areas and 527 were classified as intermediate areas). 

 

Table 2.  Comparison of population ageing measures in towns and urban areas 

for 2010 and 2016 

Demographic 
measure 

YEAR 

2010 2016 

Urban areas  
(DEGURBA) 

Towns  
(TERYT) 

Urban areas 

(DEGURBA) 

Towns  
(TERYT) 

Median age 39.0 39.3 41.1 41.5 

PSR – formula (1) 5.8 5.7 9.4 9.4 

AI – formula (2) 97.0 100.4 120.3 125.7 

EDR – formula (3) 19.1 19.3 25.5 26.1 

PEP – formula (4) 13.8 13.9 17.4 17.8 

TDR – formula (5) 38.8 38.5 46.7 46.9 

I2P – formula (10) 0.049 0.050 0.059 0.060 

WSD – formula (11) x x 0.033 0.036 

Source: Own elaboration. 

Between the two reference years all measures of demographic ageing 
increased. This is true for urban areas defined according to the DEGURBA 
classification and for towns listed in the TERYT register. In 2016 half of the 
population living in urban areas was older than 39 years. The change in median 
age reflected by the index calculated in reference to the base year 2010 was 
105.4 and was lower compared to that for towns in the TERYT register, where 
median age in 2016 was equal to 41.5 years, which is over 2 years more than in 
2010. 

Parent support ratios for both reference years, regardless of the classification, 
are below 10%. This means that the generation of parents (people aged 85 and 
over), which requires direct support and care, accounted for less than 10% of the 
subsequent generation of “children” (people aged 50-64). In this case, the values 
of the PSR measure for urban areas are almost the same as for towns. One 
particularly worrying trend is the intensity of change in the PSR indicator, which is 
the highest of all measures of population ageing presented. In 2016 PSR for 
urban areas increased by 62% relative to 2010, in the case of towns, the increase 
was even higher – as much as 65%. 

The ageing index also underwent significant changes: 24% in the case of 
urban areas and 25% in the case of towns. Moreover, between the 2 reference 
years the indicator exceeded the level of 100, which means that both in urban 



144                                            T. Klimanek, S. Filas-Przybył: The impact of the applied… 

 

 

areas and in towns, the population aged 65 and over outnumbered the youngest 
age group (0–14 years).  

The second most dynamically growing measure of population ageing was the 
elderly dependency ratio, which in the case of urban areas rose by 33.5% 
between 2010 and 2016 and by 35.2% in the case of towns. This means the 
growing burden of supporting the post-working age population by people of the 
working age. 

The proportion of elderly people in 2010 already amounted to the level of 
almost 14%, only to sky rocket in 2016 to 17.4% in urban areas and 17.8% in 
towns. In terms of the terminology adopted by the UN, this means that the urban 
population in Poland in 2010 could already be classified as old (above the 
threshold of 7%).  

Despite an increase of more than 20% in over the reference period, the total 
dependency ratio in towns was more or less similar for both classifications and in 
2016 was equal to 46.7 and 46.9 for urban areas and towns respectively. 
Interestingly, in 2010 it was slightly lower in towns (38.5 compared to 38.8 in 
urban areas). 

Chu’s alternative measure of ageing – the aged gap ageing index – also 
increased significantly between 2016 and 2010. Defined as a normalized sum of 
the proportion of old groups in the population (over 65), its dynamics 
(20% between 2010 and 2016) shows a significant increase of old groups in the 
population. It is also a quite worrying trend as far as the intensity of change is 
concerned. 

The values of the dynamic version of the ageing index for both TERYT and 
DEGURBA classification are similar. They indicate that the process of ageing in 
Polish towns could be synthetically described as representing type H, i.e. 
population ageing due to the domination of the increase in the share of population 
aged >65 over the increase in the share of population aged 0–14. 

Table 3. Measures of population ageing in urban areas by commune type in 2016 

 
Urban areas  

in total  
(DEGURBA) 

Urban 
communes  

(densely  
populated 

areas) 

Urban-rural 
communes 

(intermediate 
areas) 

Rural 
communes 

(intermediate 
areas) 

Median age 41.1 41.8 39.8 38.5 

PSR – formula (1) 9.4 10.6 7.9 7.7 

AI – formula (2) 120.3 133.9 99.3 78.4 

EDR – formula (3) 25.5 27.5 22.1 19.5 

PEP – formula (4) 17.4 18.6 15.3 13.5 

TDR – formula (5) 46.7 48.1 44.3 44.3 

I2P – formula (10) 0.059 0.064 0.050 0.045 

WSD – formula (11) 0.033 0.031 0.036 0.021 

Source: Own elaboration. 
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The results presented in the tables above clearly indicate how strongly the 
levels of population ageing measures in urban areas are affected by the inclusion 
of areas with intermediate population density according to the DEGURBA 
classification. The median age, which in densely populated areas amounted to 
41.8 years, was lower by 2 years in urban-rural areas classified as intermediate, 
and in the case of rural communes classified as intermediate areas, was lower by 
as much as 3.3 years. In many cases these are the communes which have been 
experiencing an intensive influx of migration for permanent residence from 
neighbouring big cities. These migration flows consist mainly of young families 
with small children, who could expect to buy a flat at much lower prices in nearby 
communes surrounding the big city than in the city itself. This is particularly 
evident in the case of the other measures shown in the table above. The parent 
support ratio, equal to 10.4 in densely populated areas, did not exceed 8 in areas 
with intermediate population density. This difference is particularly large in the 
case of the ageing index, which is over 130 in densely populated areas but as low 
as 78.4 in rural areas classified as intermediate. Similar relations can be observed 
in the case of the elderly dependency ratio, the proportion of elderly population, 
the total dependency ratio, Chu’s ageing index and the dynamic version of the 
ageing index. 

The ageing process shows high regional differentiation. Below are presented 
the choropleths for selected measures of population ageing in Polish towns on the 
level of NUTS2 (provinces). The arrangement of the maps for every presented 
measure of population ageing (the choice of the median, parent support ratio and 
Chu’s ageing index is due to the limitation of space in the paper) is as follows: 
first, regional differentiation of the selected measure of population ageing in 
Polish towns is compared between the general TERYT and DEGURBA approach 
and also for 2010 and 2016. Then, DEGURBA approach is analysed in more 
detail by presenting separate choropleths for urban areas from the perspective of 
different commune types (DEGURBA code 1, DEGURBA code 2 for urban-rural 
communes, DEGURBA code 2 for rural communes). This arrangement also 
includes a comparison of spatial distribution for 2010 and 2016.  
 

 

 

Figure 2.  Median age of population in Polish towns according to TERYT and 
DEGURBA typologies 

Source: Own work. 
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Figure 3. Parent support ratio of population in Polish towns according to TERYT 
and DEGURBA typologies 

Source: Own work. 

 

 

 

 

Figure 4.  Chu’s ageing index of population in Polish towns according to TERYT 
and DEGURBA typologies 

Source: Own work. 

 

The results presented in the choropleths given above (Figure 2 - Figure 4) 
exhibit a number of patterns. First, there is quite a significant spatial differentiation 
in the value of calculated demographic ageing indicators for the urban population. 
The cities of the central and southern provinces of Poland are the most affected 
by demographic ageing. In the case of the median age, high values in 2016 were 
observed for the urban population in Zachodniopomorskie province. Secondly, we 
can clearly see the acceleration of the demographic ageing process, especially 
in the oldest age groups between 2010 and 2016, which is reflected primarily by 
a huge increase in parent support ratio and Chu’s index. The decomposition of 
urban areas according to the DEGURBA classification shows that densely 
populated areas (DEGURBA code = 1) are most severely affected by 
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demographic ageing. These processes also dynamically occur in urban areas, 
which are made up of urban-rural and rural communes, but their intensity is 
significantly lower. 

 

  

   

Figure 5.  Population types according to Długosz’s dynamic version of the ageing 
index 

Source: Own work. 

 
It is also worth referring to the types of population that can be obtained using 

Długosz's dynamic index of ageing. It turns out that regardless of whether we use 
the TERYT classification or the DEGURBA classification, in the period 2010-
2016, the population living in cities/urban areas for a given province is of type D, 
i.e. the population is getting younger owing to the fact that the decrease in the 
share of the population aged >65 is greater than the decline in the percentage of 
the population aged 0-14 or of type H, i.e. population ageing is due to the 
increase in the population aged 0-14 (the same membership in both 
classifications). In the case of densely populated areas there is always an H-type 
population, for urban areas which are formed by urban-rural communes in three 
provinces, there is a H-type population (Wielkopolskie, Śląskie and Mazowieckie 
provinces), with respect to the rest, we are dealing with a population of type D. 
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In the case of rural communes in two provinces, we have an H-type population 
(Wielkopolskie and Łódź provinces); as regards the rest, we have a population of 
type D. 

One of the first comparisons of the two classifications was conducted 
in Poland by Filas-Przybył (2012), who analysed such characteristics as province 
area per one town/urban area, area of towns/urban areas per one town/urban 
area, urban population per one town/urban area, the share of urban population in 
the total population of the province. The study revealed that the largest number of 
towns according to the TERYT classification can be found in Wielkopolskie 
province (109); according to the DEGURBA typology, Śląskie province is the most 
urbanized region of the country (92 urban units). The biggest urban density was 
found to exist in Śląskie province, where the proportional share of the province 
area per one town was equal to 173.7 km2 (TERYT) and 134.1 km2 (DEGURBA). 
It turned out that regardless of the classification used, Śląskie province was also 
the most urbanized province. This was reflected by the size of an average town 
both in terms of area and population, which was almost twice as big as the 
average town size in Poland (TERYT). However, according to the DEGURBA 
typology, the largest average town in terms of size was found in Wielkopolskie 
province, while in terms of population – in Zachodniopomorskie province. 
Regardless of the classification, the smallest average town in terms of area, 
which was a third of the size of the average town in Poland according to the 
DEGURBA typology, was found in Warmińsko-Mazurskie province. 

In the light of current research on the ageing of the urban population, taking 
into account the territorial aspect and the results presented in this paper, it seems 
that the way of looking at the towns/urban areas presented in this article should 
be developed. On the one hand, we have an approach where urbanity essentially 
determines only the formal status, on the other hand, we have the DEGURBA 
classification, coming from population density and the fact of population clustering 
(kilometre grid clusters), which certainly better reflects urbanization processes 
than the legal acts or administrative decisions assigning the formal city status. 

5. Conclusions 

The article provides a comparison of the statistical picture of the ageing 
process of the urban population of Polish towns according to two typologies – 
TERYT and DEGURBA – based on selected measures of population ageing for 
2010 and 2016. In 2016 all these measures in urban areas identified according to 
the DEGURBA classification were found to be in general slightly lower than those 
obtained for the population of towns listed in the TERYT register. This represents 
a less advanced stage of population ageing in urban areas delimited not on the 
basis of legal or administrative city/town status but based on a more objective 
criterion of the degree of urbanization. Such findings, among other things, are the 
result of the inclusion of some rural communes in areas classified as urban 
according to the DEGUBRA typology. It is worth noting that in recent years these 
communes have experienced an intensive influx of migration for permanent 
residence from nearby big cities. Moreover, these migration flows consist mainly 
of young families with small children, who decide to move out of flats rented in big 
cities or shared with their parents. These migration flows have a considerable 



STATISTICS IN TRANSITION new series, December 2019 

 

149 

influence of relations between basic age groups that are the basis for calculating 
classical measures of population ageing. To a certain degree, the same can be 
true in the case of urban-rural communes classified as urban areas according to 
DEGURBA. Of the 616 communes of this type, 236 were classified as urban 
areas, while the remaining 380 – as thinly populated areas. 

It should also be noted that the traditional typology of towns according to the 
TERYT register makes it more difficult to conduct an in-depth and 
multidimensional analysis and evaluation of socio-economic phenomena that take 
place in space. It is therefore recommended that this traditional typology should 
be complemented by the approach described in this article, which is based on the 
1x1 km grid and the DEGURBA classification, making it possible to increase the 
scope and depth of analysis, also as regards population ageing processes (see 
Table 4). Given the dynamic changes currently taking place in the demographic 
structure, it is necessary to apply increasingly sophisticated analytical methods, 
which rely on a modern statistical infrastructure supported by spatial (geocoded) 
statistics. 

 

Table 4.  Selected aspects of applying TERYT and DEGURBA classifications for 
the analysis of different phenomena 

Aspect TERYT DEGURBA 
Both TERYT and 

DEGURBA 

Urbanity 
conceptualisation 

Only formal 

Selected 
demographic 
(population size) and 
morphological 
(population density) 
aspects 

Complex formal, 
demographic and 
morphological 
aspects 

Possibility of 
decomposition  

Into urban, urban – 
rural and rural 
communes, by town 
size  

Into densely 
populated areas, 
intermediate areas, 
thinly populated 
areas  

Multidimensional 
analysis (by TERYT 
communes’ 
categories, town 
size, DEGURBA 
codes)  

Relevance for 
units facing 
demographic 
changes of high 
dynamics 

Poor Better Better 

Quality of 
statistical 
information 
infrastructure 
needed 

Low High High 

Source: Own work. 

Obviously, the comparative analysis of the impact of the typology used for the 
statistical picture of population ageing described in this article includes certain 
limitations and simplifications. It seems, however, that the results are promising 
and indicate directions for future research, including the extension of the scope of 
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such studies to take into account how the migration of young generation for 
permanent residence affects the measures of population ageing, and the 
application of methods of multivariate statistics for identifying similar patterns of 
population ageing in towns. 

REFERENCES 

ABRAMOWSKA-KMON, A., (2011). O nowych miarach zaawansowania procesu 
starzenia się ludności, Studia Demograficzne, 1/159, pp. 3–19. 

BREZZI, M., DIJKSTRA, L., RUIZ, V., (2011). OECD Extended Regional 
Typology: The Economic Performance of Remote Rural Regions, OECD 
Regional Development Working Papers, 2011/06, OECD Publishing, Paris.  

CHU, C. Y. C. (1997). Age-distribution dynamics and aging indexes. 
Demography, 34(4), pp. 551–563. 

DĄBROWSKI, A., FILAS-PRZYBYŁ, S., PAWLIKOWSKI, D., (2016). Identification 
of specific areas within provincial capital cities and their functional areas 
in terms of the demographic and economic situation of their inhabitants using 
GIS-based spatial analysis,  

 Available at: http://scorus.org/index.php/conferences/2016-2/scorus-
conference-in-lisbon-portugal> [Accessed 20 November 2018]. 

DIJKSTRA, L., POELMAN, H., (2014). A Harmonised Definition of Cities and 
Rural Areas: the New Degree of Urbanisation, Regional Working Paper, WP 
01/2014, European Commission, 

 Available at: https://ec.europa.eu/regional_policy/sources/
docgener/work/2014_01_new_urban.pdf> [Accessed 25 November 2018].  

DŁUGOSZ, Z., (1998). Próba określenia zmian starości demograficznej Polski 
w ujęciu przestrzennym, Wiadomości Statystyczne, No. 3, pp. 15–25. 

DŁUGOSZ, Z., (2003). The level and dynamics of population ageing process on 
the example of demographic situation in Europe, Bulletin of Geography 
(socio-economic series), No. 2, Toruń: Nicolaus Copernicus University Press, 
pp. 5–15. 

FILAS-PRZYBYŁ, S., (2012). Nowa metodologia klasyfikowania jednostek 
przestrzennych oparta na stopniu urbanizacji. Unpublished graduation work. 

FILAS-PRZYBYŁ, S., KLIMANEK, T., KRUSZKA, K., STACHOWIAK, D., (2016). 
Identyfikacja obszarów specjalnych wewnątrz miast wojewódzkich – na 
przykładzie miasta Poznania.  

 Available at: https://www.arcanagis.pl/identyfikacja-obszarow-specjalnych-
wewnatrz-miast-wojewodzkich-na-przykladzie-miasta-poznania> [Accessed 
20 November 2018]. 

KUREK, S., (2008). Typologia starzenia się ludności Polski w ujęciu 
przestrzennym, Wydawnictwo Naukowe Akademii Pedagogicznej, Prace 
monograficzne nr 497, Kraków. 



STATISTICS IN TRANSITION new series, December 2019 

 

151 

MAJDZIŃSKA, A., (2017). Zróżnicowanie terytorialne starzenia się ludności 
Polski, Acta Universitatis Lodziensis Folia Oeconomica, 5(331), pp. 73–90. 

NATH, D., ISLAM, M. D., (2010). New Indices: An Application of Measuring the 
Aging Process of Some Asian Countries with Special Reference to 
Bangladesh. Journal of Population Ageing, pp. 23–39. 

PODOGRODZKA, M., (2016). Starzenie się ludności Polski w przekroju 
regionalnym, Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu 
Ekonomicznego w Katowicach, No. 290, pp. 83–94. 

STAŃCZAK, J., SZAŁTYS, D., (2016). Regionalne zróżnicowanie procesu 
starzenia się ludności Polski w latach 1990–2015 oraz w perspektywie do 
2040 roku, 

 Available at: 
https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/
5468/28/1/1/regionalne_zroznicowanie_procesu_starzenia_sie_ludnosci.pdf> 
[Accessed 23 December 2018]. 

TRZPIOT, G., OJRZYŃSKA, A., (2014). Analiza ryzyka starzenia 
demograficznego wybranych miast w Polsce, Studia Ekonomiczne, Zeszyty 
Naukowe Uniwersytetu Ekonomicznego w Katowicach, No. 178, pp. 235–249. 

TRZPIOT, G., SZOŁTYSEK, J., (2015). Przemiany demograficzne a mobilność 
mieszkańców miast, Studia Ekonomiczne, Zeszyty Naukowe Uniwersytetu 
Ekonomicznego w Katowicach, No. 223, pp. 121–139. 

EUROSTAT, (2011). Correspondence table Degree of Urbanisation (DEGURBA) 
– Local Administrative Units, Methodological notes – The New Degree of 
Urbanisation, 

 Available at: http://ec.europa.eu/eurostat/ramon/miscellaneous/index.cfm?
TargetUrl=DSP_DEGURBA> [Accessed 21 November 2018]. 

GUS, (2014). Prognoza ludności na lata 2014–2050,  
 Availableat at: 

http://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5469/1/
5/1/prognoza_ludnosci_na_lata____2014_-_2050.pdf> [Accessed 21 
November 2018]. 

GUS, (2015). Identyfikacja obszarów specjalnych wewnątrz miast wojewódzkich 
oraz na ich obszarach funkcjonalnych uwzględniających sytuację 
demograficzną i ekonomiczną ich mieszkańców na podstawie analiz 
przestrzennych z wykorzystaniem Geographic Information System (GIS),  

 Available at: http://stat.gov.
pl/download/gfx/portalinformacyjny/pl/defaultstronaopisowa/5850
/1/1/raport_obszary_specjalne_gis_1.pdf> [Accessed 20 November 2018]. 

GUS, (2018). Miasta w liczbach 2016,  
 Available at: 

https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5499/
3/8/1/miasta_w_liczbach_2016.pdf> [Accessed 29 November 2018]. 



152                                            T. Klimanek, S. Filas-Przybył: The impact of the applied… 

 

 

Ustawa z dnia 29 sierpnia 2003 r. o urzędowych nazwach miejscowości 
i obiektów fizjograficznych, Dz.U. 2003 nr 166 poz. 1612. 

United Nations, Department of Economic and Social Affairs, Population Division, 
(2017). World Population Prospects: The 2017 Revision. New York: United 
Nations. ST/ESA/SER.A/399.  

 



STATISTICS IN TRANSITION new series, December 2019 

 

153 

STATISTICS IN TRANSITION new series, December 2019 
Vol. 20, No. 4, pp. 153–166, DOI 10.21307/stattrans-2019-039 
Submitted – 04.03.2019; Paper ready for publication – 27.09.2019 

ON PERMUTATION LOCATION–SCALE TESTS 

Dominika Polko-Zając 1 

ABSTRACT 

Statisticians are constantly looking for methods of statistical inference that would 
be both effective and would require meeting as few assumptions as possible. 
Permutation tests seem to fit here, as using them makes it possible to perform 
statistical inference in situations where classical parametric tests do not work. 
Permutation tests appear to be comparably powerful to parametric tests, but 
require meeting fewer assumptions, e.g. regarding the size of the sample or the 
from of distribution of the tested variable in a population. The presented tests 
make it possible to verify the overall hypothesis about the identity of both location 
and scale parameters in the studied populations. In literature, the Lepage test and 
the Cucconi test are most often referred to in this context. The paper considers 
various forms of test statistics, and presents a simulation study carried out to 
determine the size and power of the tests under normality. As the study 
demonstrated, the advantage of the proposed method is that it can be applied to 
small-size samples. A nonparametric, complex procedure was used to assess the 
overall ASL (achieved significance level) value by applying the permutation 
principle. For comparative purposes, the results for the permutation Lepage test 
and the permutation Cucconi test are also presented. 

Key words: permutation tests, comparing populations, test power, the Lepage 

test, the Cucconi test. 

1. Introduction 

Comparing populations most frequently refers to a comparison of the 

characteristics of these populations. If it is assumed that population distributions 

differ only in the central tendency, there are various parametric and 

nonparametric tests to verify this hypothesis. Many authors undertake to study the 

power and size of tests for the significance of differences between means or 

medians in two or more populations, using for this purpose simulation methods 

based on bootstrap or permutation tests (Janssen and Pauls, 2005; Chang and 

Pal, 2008; Kończak, 2016; Anderson et al., 2017). The problem of comparing 

variances in populations is also common in research. For example, comparative 

studies using simulations were conducted by Hall (1972), Geng, Wang and Miller 

(1979), Keselman, Games and Clinch (1979), Conover, Johnson and Johnson 
                                                           
1  Department of Statistics, Econometrics and Mathematics, University of Economics in Katowice.  
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(1981), Balakrishnan and Ma (1990), Lim and Loh (1996), Marozzi (2011) and 

Gogoi and Gogoi (2017). 

Pesarin (2001) initiated the approach for the nonparametric testing problem. 

He considered reducing the scope of the null hypothesis by splitting it into several 

partial hypotheses. This nonparametric approach is to perform some reasonable 

tests for each individual partial hypothesis and combine their results with 

a chosen combining function. A multi–aspect test to location problem was 

considered in works by Marozzi (2004), Marozzi (2007) or Salmaso and Solari 

(2005). Nonparametric combination procedure to asses overall ASL (achieved 

significance level) value is very useful in the scale problem too (Marozzi 2012a, 

2012b).  

It is more complicated to test differences between both location parameters 

and scale parameters of the distribution in the populations studied. A need of 

simultaneously detecting location and scale changes arises in many areas, for 

example in financial matters in stock prices analysis (Lunde and Timmermann, 

2004), in the analysis of production processes, for example, testing of the process 

stability (Park, 2015a), climate dynamics analyses (Yonetani and Gordon, 2001) 

or biomedical researches (Muccioli, et al., 1996). 

Lepage (1971) initiated this topic with his proposal by combining the Wilcoxon 

rank sum and Ansari–Bradley’s test statistics for location and scale parameters. 

A test based on Lepage’s proposal but using Mood’s test statistic for the scale 

parameter was presented by Duran et al. (1976). Later, Lepage’s procedure was 

reviewed and discussed extensively by many authors (Murakami, 2007; 

Neuhauser, Leuchs and Ball, 2011). Marozzi (2008) considered the problem of 

location and scale using a nonparametric combination procedure proposed by 

Pesarin (2001). All the reviewed and compared by a simulation study test 

statistics used quadratic forms and allow one to consider only two–sided 

alternatives. Park (2015b) excluded the use of the quadratic form for the test 

statistics to accommodate various types of alternatives. The proposition described 

in this article also enables the formulation of any types of alternative hypotheses. 

The purpose of this research is to present several statistical test proposals for 

joint comparison of location and scale parameters in two populations using 

a permutation procedure for a multi–aspect testing approach. 

The rest of the paper is organized as follows. In Section 2 the research 

problem is formally defined and two tests known in the literature for simultaneous 

testing location and scale parameters are presented. In Section 3 the 

nonparametric combination procedure for location–scale problem is 

characterized. In Section 4 several test statistics for a joint comparison of the 

location and scale parameters in two populations using a nonparametric, 

permutation procedure to assess ASL values are proposed. This Section also 

contains a simulation comparison of their size and power under normality. There 

are two cases considered in simulations: both partial alternative hypotheses are 

one– or two–sided. In Section 5 concluding remarks are presented. 
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2. Simultaneous tests for the location–scale problem 

In order to discuss the location–scale problem, let observations 
1111,..., nxx and 

2221,..., nxx be random samples taken from populations with distribution functions 

1F  and 2F  respectively. Populations are of continuous distributions iF  for i 1, 

2 with unknown parameters. The null hypothesis of comparing two populations is 

in the form of    xFxFH 210 :  . In the paper, the location–scale problem is 

considered where 21,  and 21,  are locations and scale parameters of 

populations 1 and 2 respectively. According to this notation, the null hypothesis 
can be also written as 

 21210 :  H , (1) 

versus alternative hypothesis 

 21211 :  H . (2) 

In the literature, authors most often refer to the Lepage test. However, you 
can find another test to verify the same hypothesis, proposed earlier, but not so 
well known Cucconi test (Bonnini, et al., 2014). The Cucconi test (Cucconi, 1968) 
used in the situations of finding differences in the location and scale parameters 
uses the statistic of the form (Marozzi, 2009) 
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


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
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21 nnn  , 

jiR  – rank of jix  in pooled sample  21, xxx  , 

and 
 

  
1

11812

42 2







nn

n
 . 

 
Hypothesis H0 is rejected if C>-lnα, where   is the test size (Marozzi, 2009). 
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The second test, the Lepage test (1971), refers to the merger of two test 
statistics. This test is a combination of the Wilcoxon–Mann–Whitney (Mann and 
Whitney, 1947; Wilcoxon 1949) and Ansari–Bradley (Ansari and Bradley, 1960) 
test statistics 

 
  

 
  

 
22

0

2

0

2
~~
AW

AV

AEA

WV

WEW
L 





 00 , (4) 

where 

W – Wilcoxon–Mann–Whitney test statistics, 

A – Ansari–Bradley test statistics, 

    2/110  nnWE ,     12/1210  nnnWV , 

when n is even:     4/210  nnAE ,       1/48/22210  nnnnnAV ,  

when n is odd:     nnnAE /4/1
2

10  ,      22
210 /48/31 nnnnnAV  , 

W
~

– Wilcoxon–Mann–Whitney standardized test statistics, 

A
~

– Ansari–Bradley standardized test statistics. 

Hypothesis H0 is rejected if the calculated value of the test statistic exceeds 
the critical value of the test. Tables for the Lepage test can be found in Lepage 
(1973).  

3. Nonparametric combination procedures 

The problem of testing complex hypotheses can also be considered as 
proposed by Pesarin (2001). When the test concerns the location–scale testing 
problem then two partial hypotheses are taken into account. The null hypothesis 
in the form of (1) can be written differently as 

 
   2

0
1

00 : HHH   (5) 

and the corresponding decomposition is  

 
 

21
1

0 :  H  and 
 

21
2

0 :  H . (6) 

An alternative hypothesis, which is a negation of the null hypothesis, can then be 
written as  

 
   2

1
1

11 : HHH  , (7) 

where  

 
 

21
1

1 :  H ,  
 

21
2

1 :  H . (8) 

The paper considers a simulation approach based on the permutations of 
a data set. A nonparametric, complex procedure was used to assess the overall 
ASL (achieved significance level) value. The procedure for testing the null 
hypothesis versus the alternative hypothesis consists of two steps. First, each of 
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the partial null hypotheses is tested. Then, the results of the first step are jointly 
managed to solve the general problem (Marozzi, 2008).  

In the first stage of separate testing of each of the considered partial null 
hypotheses, ASL values are estimated following the traditional permutation 
method used during the verification of a single parameter hypothesis, i.e.:  

1. Assume the level of significance α. 

2. Calculate the value of statistic for the sample data ( 0T ). 

3. Perform the permutations of variable N–times and calculate the statistic test 

value ( kT ) for each permutation. 

4. On the basis of the empirical distribution of statistic, the ASL value is  
determined.  

Regarding location–scale testing, two partial aspects may be emphasized. 
Two permutation tests are performed and an estimate of two ASL values are 
obtained: the first for the equality test of mean or median parameters, the second 
for the equality test of scale parameters of the form 

  
  

    

1
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ˆ 1

1
0

1

1
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








N

TTI

TLSA

N

k

k

T
 (9) 

and 

  
  

    

1

5,0

ˆ 1

2
0

2

2
02










N

TTI

TLSA

N

k

k

T
. (10) 

where I(.) denotes the indicator function. 
With respect to standard permutation ASL estimation, 0.5 and 1 are added to 

the numerator and denominator of the fraction, respectively. The reason is to 

obtain estimated ASL values in open interval  1,0  avoiding computational 

problems, which may arise in the second step of the nonparametric procedure. 
However, since large N is used, this correction is practically irrelevant (Marozzi, 
2008). 

The second step of the nonparametric procedure of statistical inference 
includes calculation of the overall ASL value using the combining function 
(Pesarin, 2001) 

     21 ,12 TT
ASLASLT   . 

There are many forms of combining functions for determining the overall ASL 
value, although the authors the most often used combining functions:  

  the Fisher omnibus combining function (Fisher, 1932) 
 

      21
ˆlogˆlog2

TT

F LSALSAC  , 
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 the Liptak combining function (Liptak 1958) 
 

     21
ˆ1ˆ1 11

TT

L LSALSAC  
, where   denotes the standard 

normal distribution function, 

 the Tippet combining function (Tippet, 1931) 
 

    21
ˆ1,ˆ1max

TT

T LSALSAC  . 

The observed statistics value for the sample data can be determined as 

  
    

   2
0

1
0012 21

ˆ,ˆ TLSATLSAT
TT

  , (11) 

and its distribution is determined on the basis of the same permutations of the first 
step of this procedure, for example the k–th permutation value of statistics is 
computed 

  
    

   21
12 21

ˆ,ˆ
kTkTk TLSATLSAT   . (12) 

Overall ASL value of the test is estimated by using the formula 

 

 

N

TTI

LSA

N

k

k

T






 1

01212

12

ˆ



. (13) 

where I(.) denotes the indicator function. 

4. Monte Carlo study 

Most often, the statistical inference concerns situations where there are 
differences between the considered populations without indicating the nature of 
this difference. An alternative hypothesis of form (2) is then considered. Thanks to 
permutation tests, it is also possible to consider one–sided alternative 
hypotheses, for example: 

 
21

1
1 :  H  or 

 
21

2
1 :  H . 

The study considered various forms of test statistics (Table 1). The 
simulations consisted of calculating the size and power of the presented tests 
using a complex, nonparametric method of testing the location and scale 
parameters. All 1–8 models were used in the simulation study when partial 
alternative two–sided hypotheses were considered. To verify the null hypothesis, 
when partial alternative hypotheses were one–sided hypotheses, models 1–5 
were used. Model 6 considers the form of test statistics included in the 
combination of statistics used in the Lepage test. For comparative purposes, the 
results for the permutation Lepage test (model 7) and permutation Cucconi test 
(model 8) were also included when alternative two–sided hypotheses were 
considered. The nonparametric combination procedure for the estimated overall 
ASL value was used when considering models 1–6. 
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In the simulation study samples taken from normal distribution with 

15,10 21  nn  sample sizes were considered. Three situations were analysed: 

a) 021    and 1/ 21  , 

b) 021    and 1/ 21  , 

c) 021    and 1/ 21  . 

Parameters of the distribution from which the second sample was taken are 

02   and 12  ,  whereas parameters of the distribution from which the first 

sample was taken are defined as follows: 

a) if 021    then  6.1,2.01  with the increment 0.2 and 11  , 

b) if 1/ 21   then  6.2,2.11  with the increment 0.2 and 01  , 

c) if 021    and 1/ 21   then parameters of the distribution  11,  

equal from (0.2,1.2) to (1.6,2.6) with the increment 0.2 for each 
parameter. 

Table 1. Statistics used in simulation study 

Model Statistics 
 1T  Statistics 

 2T  

1  
21

1
1 xxT   )2(

1T
2
2

2
1

s

s
 

2  
21

1
2 mmT   ,

2

1)2(

2
R

R
T   

3   WT 1
3  ,

2

1)2(

3
R

R
T   

4   WT 1
4  

  ,2
4 MT   

5   WT 1
5  

  ,2
5 OBT   

6   21
6

~
WT   

  22
6

~
AT   

7 LT 7  

8 CT 8  

where:  

21,xx  – sample means from first and second population respectively, 

21,mm  – sample medians from first and second population respectively, 

21,RR  – sample ranges from first and second population respectively, 

W – Wilcoxon–Mann–Whitney test statistics, 

M – Mood test statistics (Mood, 1954), 

OB – O’Brien test statistics (O’Brien, 1979), 

W
~

 – Wilcoxon–Mann–Whitney standardized test statistics, 
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A
~

 – Ansari–Bradley standardized test statistics, 

L – Lepage test statistics (4), 

C – Cucconi test statistics (3). 

 
 

Table 2.  Size and power estimates when 021   and 1/ 21  , 05.0 , 

 for samples 15,10 21  nn (two–sided alternative hypotheses) 

Model 

Distribution parameters  11,  

 1,0   1,2.0   1,4.0   1,6.0   1,8.0   1,1   1,2.1   1,4.1   1,6.1  

1 0.046 0.060 0.124 0.240 0.375 0.527 0.684 0.793 0.895 

2 0.048 0.065 0.114 0.206 0.307 0.430 0.570 0.689 0.816 

3 0.060 0.096 0.188 0.315 0.467 0.626 0.774 0.863 0.940 

4 0.054 0.094 0.163 0.295 0.450 0.566 0.734 0.831 0.922 

5 0.060 0.104 0.164 0.307 0.464 0.605 0.765 0.849 0.930 

6 0.057 0.069 0.111 0.207 0.343 0.502 0.649 0.765 0.889 

7 0.052 0.065 0.104 0.210 0.349 0.510 0.653 0.783 0.894 

8 0.055 0.072 0.105 0.207 0.347 0.508 0.662 0.769 0.890 

Source: Own calculation in R program. 
 
 

Table 3.  Power estimates when 021    and 1/ 21  , 05.0 , for 

 samples 15,10 21  nn , (two–sided alternative hypotheses) 

Model 

Distribution parameters  11,  

 2.1,0   4.1,0   6.1,0   8.1,0   2,0   2.2,0   4.2,0   6.2,0  

1 0.115 0.232 0.308 0.440 0.548 0.635 0.750 0.784 

2 0.112 0.203 0.305 0.417 0.498 0.604 0.713 0.752 

3 0.092 0.176 0.280 0.396 0.455 0.558 0.685 0.722 

4 0.079 0.126 0.210 0.282 0.365 0.443 0.527 0.596 

5 0.085 0.167 0.276 0.401 0.478 0.580 0.681 0.718 

6 0.068 0.133 0.159 0.263 0.316 0.386 0.477 0.545 

7 0.077 0.148 0.210 0.307 0.390 0.463 0.573 0.647 

8 0.069 0.132 0.172 0.263 0.327 0.399 0.484 0.550 

Source: Own calculation in R program. 
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Table 4.  Power estimates when 021   and 1/ 21  , 05.0 , for 

 samples 15,10 21  nn , (two–sided alternative hypotheses) 

Model 
Distribution parameters  11,  

 2.1,2.0   4.1,4.0   6.1,6.0   8.1,8.0   2,1   2.2,2.1   4.2,4.1   6.2,6.1  

1 0.145 0.269 0.463 0.624 0.742 0.840 0.874 0.930 

2 0.127 0.251 0.422 0.579 0.681 0.792 0.850 0.896 

3 0.165 0.309 0.471 0.651 0.742 0.833 0.865 0.920 

4 0.124 0.239 0.374 0.516 0.646 0.762 0.812 0.846 

5 0.131 0.288 0.469 0.642 0.762 0.859 0.889 0.935 

6 0.090 0.161 0.263 0.384 0.508 0.600 0.691 0.739 

7 0.106 0.191 0.319 0.424 0.577 0.659 0.748 0.785 

8 0.095 0.159 0.295 0.375 0.502 0.604 0.683 0.738 

Source: Own calculation in R program. 
 
 

Table 5.  Size and power estimates when 021   and 1/ 21  , 05.0 , 

 for samples 15,10 21  nn (one–sided alternative hypotheses) 

Model 

Distribution parameters  11,  

 1,0   1,2.0   1,4.0   1,6.0   1,8.0   1,1   1,2.1   1,4.1   1,6.1  

1 0.047 0.105 0.179 0.293 0.495 0.651 0.771 0.885 0.954 

2 0.042 0.096 0.166 0.261 0.402 0.568 0.691 0.830 0.925 

3 0.050 0.099 0.169 0.295 0.460 0.645 0.763 0.878 0.953 

4 0.047 0.100 0.178 0.282 0.454 0.634 0.752 0.875 0.947 

5 0.043 0.097 0.162 0.277 0.447 0.627 0.754 0.870 0.948 

Source: Own calculation in R program. 
 

For each of 1000 Monte Carlo simulations, 1000 random permutations of 

variables and the nominal significance level 05.0  were considered. The 

studies used Fisher’s combining function to determine the overall ASL value. The 
results of the simulations carried out to determine the size and power of the tests 
are presented in Tables 2–7. Estimated probabilities of rejection of the hypothesis

0H when partial two–sided alternative hypotheses were taken under 

consideration are presented in Tables 2–4. In the case of partial one–sided 
alternative hypotheses, estimated probabilities are presented in Tables 5–7, 
respectively. 
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Table 6.  Power estimates when 021    and 1/ 21  , 05.0 , for 

 samples 15,10 21  nn , (one–sided alternative hypotheses) 

Model 

Distribution parameters  11,  

 2.1,0   4.1,0   6.1,0   8.1,0   2,0   2.2,0   4.2,0   6.2,0  

1 0.108 0.183 0.320 0.437 0.536 0.616 0.708 0.779 

2 0.107 0.171 0.278 0.404 0.462 0.572 0.628 0.705 

3 0.102 0.180 0.277 0.398 0.464 0.574 0.627 0.702 

4 0.100 0.171 0.272 0.373 0.441 0.509 0.584 0.674 

5 0.110 0.196 0.319 0.435 0.528 0.599 0.659 0.737 

Source: Own calculation in R program. 
 
 

Table 7.  Power estimates when 021  and 1/ 21  , 05.0 , for 

 samples 15,10 21  nn , (one–sided alternative hypotheses) 

Model 

Distribution parameters  11,  

 2.1,2.0   4.1,4.0   6.1,6.0   8.1,8.0   2,1   2.2,2.1   4.2,4.1   6.2,6.1  

1 0.167 0.345 0.526 0.672 0.806 0.865 0.928 0.949 

2 0.159 0.322 0.490 0.625 0.745 0.838 0.895 0.933 

3 0.158 0.320 0.487 0.616 0.748 0.846 0.894 0.924 

4 0.156 0.313 0.473 0.600 0.745 0.811 0.881 0.906 

5 0.160 0.352 0.518 0.661 0.801 0.866 0.931 0.948 

Source: Own calculation in R program. 
 
 

The size of the tests is shown in Tables 2 and 5 in the first column. For all 
models, the obtained estimated probabilities are close to the nominal level of 

significance 05.0 . The tests considered achieved comparable results in the 

case of small samples, the size of which was not equal. The tests used in models 
1, 3 and 5 were the most powerful. The probabilities of detecting differences 
between populations increased with increasing differences between the 
respective location or scale parameters for both considered partial two– and one–
sided alternative hypotheses. 
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5. Conclusions 

The simulation research aimed to determine the ability of the presented 
location and scale tests to maintain the nominal probability of committing the type 
I error and the ability to obtain a high probability of rejecting a false zero 
hypothesis in the conditions of changing distribution parameters in populations 
from which samples were taken.  

The tests that verify the hypothesis about the identity of location and scale 
parameters in the studied populations are presented. The article considered 
various forms of test statistics. A simulation study to determine the size and 
power of tests was carried out using permutation tests.  

When analysing the results obtained it can be seen that the inference about 
the significance of differences between populations is possible with the use of the 
proposed solution. All testing procedures (under normality) ensured control of 
type I error at the assumed level of significance. The simulation analysis indicated 
that the proposed tests allowed the inference about the differences in location or 
scale parameters, as well as differences in both location and scale parameters of 
distributions. The results for the permutation Lepage test and permutation 
Cucconi test are also presented where two–sided alternative hypothesis is 
considered. Higher power of tests was achieved thanks to the use of 
a nonparametric procedure that uses Fisher's combining functions to evaluate the 
overall ASL value. The observed assessments of the probability of rejection of the 
null hypothesis were similar for various pairs of test statistics considered in the 
simulations. One advantage of the procedure presented in the article is also the 
possibility of formulating an alternative hypothesis in the form of partial directional 
hypotheses. The method can be used even in the case of small sample sizes. 
In the research, other forms of combining functions can be considered and 
a simulation study taking into account the various distributions of the studied 
variables can be performed. The direction of further research also concerns the 
extension of the method to a multidimensional case. 

REFERENCES 

ANDERSON, M. J., WALSH, D. C. I., CLARKE, K.R., GORLEY, R. N., GUERRA–
CASTRO, E., (2017). Permutational Multivariate Analysis of Variance 
(PERMANOVA), Wiley StatsRef: Statistics Reference Online, pp. 1–15. 

ANSARI, A. R., BRADLEY, R. A., (1960). Rank–sum tests for dispersions. Annals 
of Mathematical Statistics 31, pp. 1174–1189. 

BALAKRISHNAN, N., MA, C. W., (1990). A comparative study of various tests for 
the equality of two population variances, Journal of Statistical Computation 
and Simulation, 35, pp. 41–89. 

BONNINI, S., CORAIN, L., MAROZZI, M., SALMASO, L., (2014). Nonparametric 
Hypothesis Testing Rank and Permutation Methods with Applications in R, 
John Wiley & Sons, Ltd. 



164                                                                     D. Polko-Zając: On permutation location… 

 

 

CHANG, C.–H., PAL, N., (2008). A Revisit to the Behrens–Fisher Problem: 
Comparison of Five Test Methods. Communications in Statistics – Simulation 
and Computation, 37, (6), pp. 1064–1085. 

CONOVER, W. J., JOHNSON, M. E., JOHNSON, M. M., (1981). A comparative 
study of tests for homogeneity of variances, with applications to the outer 
continental shelf bidding data, Technometrics, 23, pp. 351–361. 

CUCCONI, O., (1968). Un nuovo test non parametrico per it confronto tra due 
gruppi campionori. Giornale degli Economisti, XXVII, pp. 225–248. 

DURAN, B. S., TSAI, W. S., LEWIS, T. O., (1976). A class of location-scale tests, 
Biometrika, 63, pp. 173–176. 

FISHER, R. A., (1932). Statistical Methods for Research Workers, 4 ed., 
Edinburgh: Oliver & Boyd. 

GENG, S., WANG, W. J., MILLER, C., (1979). Small sample size comparisons of 
tests for homogeneity of variances by Monte-Carlo. Communications 
in Statistics – Simulation and Computation, 8, pp. 379–389. 

GOGOI, P., GOGOI, B., (2017). Some Tests Procedures for Scale Differences. 
International Advanced Research Journal in Science, Engineering and 
Technology, Vol. 4, Issue 11, pp. 155–166. 

HALL, I. J., (1972). Some comparisons of tests for equality of variances, Journal 
of Statistical Computation and Simulation, 1, pp. 183–194. 

JANSSEN, A., PAULS, T., (2005). A Monte Carlo comparison of studentized 
bootstrap and permutation tests for heteroscedastic two–sample problems. 
Computational Statistics, 20 (3), pp. 369–383. 

KESELMAN, H. J., GAMES, P. A., CLINCH, J. J., (1979). Tests for homogeneity 
of variance. Communications in Statistics – Simulation and Computation, 8, 
pp. 113–119. 

KOŃCZAK, G., (2016). Testy permutacyjne, Teoria i zastosowania, Katowice: 
Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach. 

LEPAGE, Y., (1971). A combination of Wilcoxon’s and Ansari–Bradley’s statistics, 
Biometrika 58, pp. 213–217. 

LEPAGE, Y., (1973). A table for a combined Wilcoxon Ansari–Bradley statistic, 
Biometrika 60, pp. 113–116. 

LIM, T.S., LOH, W. Y., (1996). A comparison of tests of equality of variances, 
Computational Statistics and Data Analysis, 22, pp. 287–301. 

LIPTAK, I., (1958). On the combination of independent tests. Magyar 
Tudomanyos Akademia Matematikai Kutato Intezenek Kozlomenyei 3, 
pp. 127–141. 

LUNDE, A., TIMMERMANN, A., (2004). Duration dependence in stock prices: an 
analysis of bull and bear markets, Journal of Business and Economic 
Statistics, 22, pp. 253–273. 



STATISTICS IN TRANSITION new series, December 2019 

 

165 

MANN, H., WHITNEY, D., (1947). On a test of whether one of two random 
variables is stochastically larger than the other, Annals of Mathematical 
Statistics, 18, (1), pp. 50–60. 

MAROZZI, M., (2004). A bi-aspect nonparametric test for the two-sample location 
problem, Computational Statistics and Data Analysis, 44, pp. 639–648.  

MAROZZI, M., (2007). Multivariate tri–aspect non-parametric testing, Journal of 
Nonparametric Statistics, 19, pp. 269–282. 

MAROZZI, M., (2008). The Lepage location–scale test revisited, Far East Journal 
of Theoretical Statistics 24, pp. 137–155. 

MAROZZI, M., (2009). Some notes on the location–scale Cucconi test, Journal of 
Nonparametric Statistics, 21, 5, pp. 629–647. 

MAROZZI, M., (2011). Levene type tests for the ratio of two scales, Journal of 
Statistical Computation and Simulation, 81, pp. 815–826. 

MAROZZI, M., (2012a). A distribution free test for the equality of scales. 
Communication in Statistics – Simulation and Computation, 41, pp. 878–889. 

MAROZZI, M., (2012b). A combined test for differences in scale based on the 
interquantile range. Statistical Papers, 53, pp. 61–72. 

MOOD, A. M., (1954). On the asymptotic efficiency of certain nonparametric 
two–sample tests. Ann Math Stat 25, pp. 514–522. 

MUCCIOLI, C., BELFORD, R., PODGOR, M., SAMPAIO, P., DE SMET, M., 
NUSSENBLATT, R., (1996). The diagnosis of intraocular inflammation and 
cytomegalovirus retinitis in HIV–infected patients by laser flare photometry, 
Ocular Immunology and Inflammation, 4, pp. 75–81. 

MURAKAMI, H., (2007). Lepage type statistic based on the modified Baumgartner 
statistic, Computational Statistics & Data Analysis, 51, pp. 5061–5067.  

NEUHAUSER, M., LEUCHS, A.-K., BALL, D., (2011). A new location-scale test 
based on a combination of the ideas of Levene and Lepage, Biometrical 
Journal, 53, pp. 525–534. 

O’BRIEN, R. G., (1979). A general ANOVA method for robust test of additive 
models for variance, Journal of the American Statistical Association, 74, 
pp. 877–880.  

PARK, H-I., (2015a). Simultaneous Tests with Combining Functions under 
Normality, Communications for Statistical Applications and Methods, Vol. 22, 
No. 6, pp. 639–646. 

PARK, H-I., (2015b). Nonparametric Simultaneous Test Procedures, Revista 
Colombiana de Estadística, 38(1), pp. 107–121. 

PESARIN, F., (2001). Multivariate Permutation Test with Applications in Biostatistics, 
Chichester: Wiley. 

SALMASO, L., SOLARI, A., (2005). Multiple aspect testing for case-control 
designs, Metrika, 62, pp. 331–340. 



166                                                                     D. Polko-Zając: On permutation location… 

 

 

TIPPETT, L. H. C., (1931). The Methods of Statistics, London: Williams and 
Norgate. 

WILCOXON, F., (1949). Some rapid approximate statistical procedures, 
Stamford, CT: Stamford Research Laboratories, American Cyanamid 
Corporation. 

YONETANI, T., GORDON, H. B., (2001). Abrupt changes as indicators of decadal 
climate variability, Climate Dynamics, 17, pp. 249–258. 

 

 

 



STATISTICS IN TRANSITION new series, December 2019 

 

167 

STATISTICS IN TRANSITION new series, December 2019 
Vol. 20, No. 4, pp. 167–179, DOI 10.21307/stattrans-2019-040 
Submitted – 11.09.2019; Paper ready for publication – 26.11.2019 

SUBJECTIVE AND COMMUNITY WELL-BEING 
INTERACTION IN A MULTILEVEL SPATIAL  

MODELLING FRAMEWORK 1 

Włodzimierz Okrasa 2, Dominik Rozkrut 3 

ABSTRACT 

Analysing the cross-level interaction between individual and community well-being 
requires a joint involvement of both 'vertical' and 'horizontal' perspectives. While 
multilevel modelling separates the effects resulting from personal characteristics 
from those resulting from community features, the need to account for spatial 
variation and geographic membership proves that space and place matter, too. 
In this paper, the explicitly-spatial multilevel model has been developed to this 
effect, namely to identify both types of effects, space and place-related, using the 
hierarchical (nested) data structure for the smallest administrative units – 
NUTS5/LAU2, i.e. communes (gminas). In their analysis, the authors employed 
two methods for measuring well-being: (i) individual (subjective) well-being 
measure derived from the nation-wide Time Use Survey data, which they 
occasionally replaced with 'life satisfaction' type of self-reported measures, and 
(ii) multidimensional index of local deprivation composed of eleven domain-scales. 
The spatial multilevel modelling has been extended by an attempt to assess what 
effect spatial interaction has on cross-level relationships. Its inclusion in the 
discussion with which this paper concludes seems recommendable, as it indicates 
the need for more systematic efforts towards a spatially-integrated approach to 
this kind of modelling problems. 

Key words: spatial analysis, measuring subjective well-being, community 

deprivation, social capital. 

1. Introduction  

There are several reasons to analyse community and individual well-being 
jointly and, by the same token, to focus on the relationship between them, 
especially in the local development context. Several aspects of this relation have 
been recognized and discussed thoroughly in the literature, inspired among 
others by Stiglitz-Fitoussi-Sen (2009) report challenging the tradition of using 
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GDP as the main measure of social progress, along with concomitantly growing 
awareness of the significant role of subjective well-being in economic 
development (esp. sustainable development, e.g. Helliwell, et al., 2010) at both 
macro-level (although not in an unambiguous way, e.g. Easterlin, 2010), as well 
as in connection with community (e.g. Phillip and Wong, 2017). 

In the employed modelling approach, an empirical application is preceded by 
discussion of the measurement and data issues, including the problem of creation 
an analytical multi-source database (through 'bottom up' integration of units from 
different surveys) and construction of the major well-being measures: 
(i) multidimensional index of local deprivation encompassing eleven components, 
each of them being constructed from public-use data file (Local Data Bank, 
Statistics Poland), using 'confirmatory' version of factor analysis (for all 2478 
communes (gminas)), and (ii) individual (subjective) well-being measure derived 
from the nation-wide Time Use Survey, which is substituted in some contexts by 
self-reported measures from national surveys on Social Cohesion or Social 
Diagnosis. 

An empirical application of the multilevel spatial modelling (which constitutes 
the major portion of the remaining part of the paper) is preceded by searching for 
main factors and auxiliary covariates affecting individual (subjective) well-being, 
while looking after the issue of endogeneity.  

When expressed in a way analogous to the so-called basic 'life-satisfaction 
equation', subjective well-being might be treated as a function of residents' 
income and hours of work vis-a-vis the impact of community well-being 
(or deprivation) through employing a causal type of reasoning using path analytic 
version of the structural model. A path-analytic version of the structural model is 
employed to decompose total effect of the independent variable into the natural 
direct and indirect effects (Hong, 2015; Okrasa and Rozkrut, 2018).  

Another important factor at the community level (referred often to social 
cohesion) is social capital, the relative impact of which - weighted against 
individual income - is checked using the 'compensating variation' approach. 
Social capital, indicated by the intensity of the third sector organizations' presence 
in a community, can be interpreted as the amount of money required to 
compensate a person for a possible loss in utility (for instance, like when price is 
rising). The 'compensating variation' approach to social capital allows one to 
identify the utility gain derived from a unit increase in social capital (Anand and 
Montovani, 2018; Okrasa, 2018).  

Following exploration of spatial patterning, clustering and spatial dependence 
(using GeoDa procedures, Fischer and Getis, 2010) a direct assessment of the 
spatial interaction effect on the cross-level relationships is also attempted (Patuelli 
and Arbia, 2016) using flow-type data from between-community migration public 
statistics.   

In the concluding section, a spatially integrated approach to vertical 
(multilevel) and horizontal (across areal units) relationships between individual 
(subjective) and group (community) measures of well-being is discussed towards 
elaborating a comprehensive methodological framework, as noted by Arcaya 
et al., (2012) who analysed area variations in health, accounting for spatial and 
membership processes simultaneously providing valuable insights (p. 824). 
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2. Methodology: operationalzation, data and models 

The increased focus on well-being (along the beyond-GDP paradigm) results 
also in several guidelines and recommendations offered in the literature on the 
measurement of subjective well-being in public statistics, such as ONS Report 
(Dolan et al., 2011); OECD Report (2013, 2015), CNSTAT/Stone and Mackie 
(2014); Kalton et al. (2015). While there is a consensus regarding individual 
(subjective) well-being measures that they are supposed to cover all or some 
aspects of its triadic structure of subjective well-being – evaluation (e.g. 
Satisfaction from Life);  experience (How did you feel yesterday); and eudaimonic 
(Sense of Life) – the community well-being measurement approaches still await 
similar elucidation (e.g. Kim and Ludvigs (2017)), although several country-
specific approaches have been already well developed within public statistical 
systems  (for instance, in Australia, Canada, USA, and UK).  

2.1.  Individual (Subjective) well-being: Time Use Survey/TUS data-based 
 measures   

Since psychometric, self-reported data-based measures of well-being are 
often criticized by econometricians for their arbitrariness and low reliability, data 
from time use surveys (collected with day reconstruction method/DRM) are being 
recommended instead - see Kahneman and Krueger (2006).  

Amount of the time h spent by respondent on performing an activity with 
information on emotion (negative-neutral-positive) s/he was associating with this 
activity (as ‘time in unpleasant state’)  can be reflected by the value of U-index 
(e.g. Krueger et al., 2009, p. 19):   

Ui  = Σj ( Iij hij / Σjhij ) (in TUS conducted in 2013: I = -1. 0. +1)    (1) 

 and  

U = Σi(Σj Iijhij / Σjhij ) / N for N-persons / group in population, interpreted as 
the average proportion of time that the members of the group spend in an 
unpleasant state. 

Such an approach to measuring life satisfaction or happiness is not only more 
consistent with the concept of utility4. The lack of such an underlying concept 
makes some authors (e.g. Gibson, 2016) full of reservation towards the use of 
these  measures. But it has a direct reference to the capability approach 
according to A. Sen’s interpretation, who stresses that well-being should be 
conceived directly in terms of functionings and capabilities instead of resources or 
utility (e.g. Alkire, 2015). Time use data  seems to be one of the most reliable 
source of information on functioning and capabilities. 

2.2. Community Well-Being (CWB) is a multifaceted and multilevel concept, 
hardly covered by standardized procedures of operationalization and 
measurement. It is a "concept developed by synthesizing research 
constructs related to resident’s perceptions of the community, … needs 

                                                           
4 For instance, Gibson (2016) maintained that there is no theoretical justification for maximizing either 

happiness or life satisfaction due to the fact that neither correspond to utility. 
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fulfilments, observable community conditions, and the social and cultural 
context…” (Sung and Phillips 2016:2 [in Phillpis and Wong 2017). The 
important features of CWB often include community cohesion (or local, 
spatial cohesion), which is interpreted here as any of the possible patterns of 
configuration of the economic cohesion and/or social cohesion and/or 
territorial cohesion (following Kearns and Forest (2001). 

Both types of measures - individual and community well-being – constitute the 
main input of the Multi-source Analytical Database (MAD). It encompasses 
Multidimensional Index of Local Deprivation (MILD) for 2478 communes/gminas 
(NUTS5/LAU2), composed of eleven (pre-selected) domains of deprivation - each 
characterized by a number of original items: ecology – finance – economy – 
infrastructure – municipal utilities – culture – housing – social assistance – labour 
market – education – health  [65 items].  

Other constitutive components of AMD are: Time Use Survey (TUS2013) and 
Social Diagnosis, an independent survey conducted bi-annually by a consortium 
of universities since 2003 to 2015 (12 352 households or 26 308 persons at age 
16+), and data from EU-SILC (Survey of Income and Living Conditions, 
conducted on a regular basis in member countries of the European Union). 
Figure 1 presents the structure of MAD, where darkened centre marks the scope 
of data integrated in the following analysis. 

 

 

 

Figure 1. Multisource Analytical Database MAD  

The data from Social Diagnosis survey allowed us to construct several 
compositional types of measures of community well-being. Specifically, measures 
of the level of satisfaction of  residents – based on the percentage of ‘satisfied’ or 
‘very satisfied’ on each of the five scales – were attributed to communes (in which 
at least 10 households were identified as included into the survey). The following 
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scales were built: (i) satisfaction with living conditions; (ii) satisfaction with living 
environment; (iii) satisfaction with social and family relations; (iv) satisfaction with 
personal situation, and (v) disapproval of antisocial behaviour.  

2.3. Individual and community level factors of subjective well-being  

Several working hypotheses implied by theoretical considerations or by the 
results of other research in the literature shown to be subject to verification on the 
ground of the above sketched MAD. Two of them are briefly checked here. One 
refers to the extensively discussed trade-off between income from earning and 
time spend on work (Clark 2018). The second hypothesis concerns the role of 
social capital in the face of a possible loss of income by household (Anand and 
Montovani, 2018). 

Basic Well-Being Equation – hypothesis of income and time of work trade-off.   

Approximation of the so-called in the literature basic well-being equation or 
‘life satisfaction equation’ (e.g. Clark 2018) is made here  with the following 
equation:   

               Well-Being  = β1Y + β2h + θ X + ε         (2) 

where h – time of work; Y earning, and X  also auxiliary covariates. 

Results are in Table 1 (next section).  

The role of social capital – compensating variation approach.  
Complementary to the above considerations of work and earning trade-off the role 
of community's social capital can be tested using the so-called ‘compensating 
variation ‘ approach (e.g.  Anand and Montovani, 2018) . 

Formally, a life satisfaction equation can be re-written as:  

                         𝑈0(𝑦0, 𝑆𝐶0)=𝑈1(𝑦0+𝐶𝑉,𝑆𝐶1)           (3) 

where y is household income,  SC stands for social capital, and CV for 
compensating variation (or CV for y), which can be obtained by identifying the 
utility gain derived from a unit increase in social capital. Accordingly, the expected 
utility given any particular value of social capital can be written as: 

  (𝑈𝑖|𝑆𝐶𝑖,𝑦𝑖,𝑋𝑖) = 𝛽0+𝛽𝑦𝑦𝑖+𝛽𝑠𝑐𝑆𝐶𝑖+𝛾′𝑋𝑖+𝜀𝑖                             (4) 

where X represents all additional covariates. 

Following Anand and Montovani (2018), CV can be defined as 

                    𝐶𝑉=𝛽𝑆𝐶 / 𝛽𝑦.                                                                                          (5) 

(see Anand and Montovani 2018 for details) 
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These two aspects of relation in which income remains, on the one hand, with 
time of work and, on the other, with social capital, can be arranged in a joint 
(extended) well-being equation, with social capital included into the set of 
predictors. Results are in Table 1.         

2.4.  Individual well-being and community well-being relationship - a 
 multilevel modelling approach 

In order to capture the effect of community for individual well-being, or the so-
called membership process, multilevel modelling approach seems to be most 
appropriate (e.g. Arcaya et al., 2012, Okrasa, 2017). Ideally, it  should employ 
hierarchically nested structure data, which is not the case of data in MADb, where 
for the selected communes/gminas, the group-level data are complemented by 
data derived from individual (household) level. However, it suffices to 
demonstrate the logic of the approach here, albeit with caution in interpretation of 
detailed results since formally admissible procedure applied to available data of 
official statistics can only provide an empirical illustration or argument for the 
appropriateness of such a modelling approach.  

Having made the needed reservations, the following model was employed, 
using notations (e.g. Subramanian, 2010):  

– yij; well-being of i individual in j commune/gmina;  

– x1ij  predictor of individual – such as: age, education or satisfaction 
(e.g. from life in a community, family life, etc.) 

– predictor of macro-level: Multideminsonal Index of Local Deprivation for 
j-commune/gmina /MILDj 

 

 Model for one-level regression:  Y
ij
 = β

0j 
+ β

1j 
X

 1ij 
 + β

2j 
X

 2ij 
 + e

ij    
(6) 

Let y
ij
  stands for household disposable equivalised income: 

yij = β0j + β1j ability-to-meet-endsij + β2jlocal-deprivationij  + eij 

                     where:  β0j – refers to X0ij  average score on a well-being scale 
in  j-th commune/gmina  (e.g. ‘ability to meet ends’, X0ij =1);  

 βi –  average  differentiation of individual well-being associated with  
individual material status (X1ij) across  all territorial units 
(communes/gminas);   

e0ij – residual term for the level-1.  

 

 Two-level model to account for hierarchical data structure can be specified 
as two-level regression, to explain the variation of the regression coefficients 



STATISTICS IN TRANSITION new series, December 2019 

 

173 

β
j 
 through including the level of local deprivation (alter. local development 

indicator  Z
j 
 ≡ MILD(2016):  

 β
0j 

= γ
00

 + γ
01

 Z
j 
+ u

0j                                             (7) 

and 
 

β1j = γ10 +  γ11MILDj  + u1j 

β2j = γ20 +  γ21MILDj  + u2j     

 
Rearranging terms we obtain:  

Y
j
 = γ

00
+ γ

10
 X

 1ij 
+

 
γ

20 
X

 2ij
+ γ

01
 MILD

jj
+ γ

11
 X

 1ij 
MILD

j 
+ γ

21
 X

 2ij 
MILD

j 

      + u
1j 

X
 1ij 

+ u
1j 

X
 2ij

+ u
0j
+e

ij                                                                                                             
(8)   

– where w1j is a 2-level predictor, i.e. the index of local deprivation, MILD1j. 

Results are in Table 2. 

2.5. Spatial aspects - checking for spatial dependence  

Estimation of the spatial regression model parameters (notation for individual 
observation):  

yi = ρ ∑n
j=1 Wij yj  + ∑k

r=1  Xir βr + εi                                (9)   

where: yi – the dependent variable for observation i;   Xir  k – explanatory variables 

r = 1. …. k with associated coefficient  βr;  εi  is the disturbance term; ρ is the 
parameter of the strength of the average association between the dependent 
variable values  for region/observations and the average of them for their 
neighbours (e.g. LeSage and Pace. 2010.  p. 357). The  above specification of 
the spatial regression model assumes that εi is meant as the spatially lagged term 
– versus spatial error formulation -  for the dependent variable  (which is 
correlated with the dependent variable), that is: εi  = ρ Wi.yi  + Xi. β  + ϵi.  The latter 
type of model is used below to check how and why  ‘place’ and  ‘space‘ matter. 

3.  Results  

At a glance, results are generally in line with the hypotheses cited above. 

As regards the impact of income vs. work time, there are opposite directions 
of  influence of income and work time on well-being measured here by U-index. 
While greater income is positive for individual well-being (U-index decreases with 
growing income), the increased  amount of time spent on work is negative  
(U-index increases). Question arises about the point of balance (trade-off 
between the two factors of well-being – see Kahneman and Deaton (2010) for 
comparison of the income effect.  
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Table 1. The Well-Being Equation extended by community cohesion – social 
capital – and individual-level variables 

Predictors 

Unstand. Coefficients Stnd. Coeff. 

 B Std. Error Beta t Sign. 

(Constant) 0.029 0.027   1.068 0.285 

Job-time (main and additional) 0.004 0.000 0.285 24.630 0.000 

Income of H'hold pc - monthly -1.841E-05 0.000 -0.087 -6.987 0.000  

MILD_2014 Local Deprivation 0.000 0.000 0.118 6.630 0.000 

Subsidies Real < Simulated/fair -0.011 0.002 -0.070 -6.887 0.000 

Risk assoc. w/depr. Soc.Welfare  -0.036 0.002 -0.649 -15.626 0.000 

Risk assoc. w/depr. Lab. Market 0.050 0.003 0.809 18.454 0.000 

Ratio 'in-work' to 'not-in-work' -0.010 0.001 -0.080 -6.900 0.000 

Rural -0.007 0.003 -0.030 -1.978 0.048 

U-R mixed -0.014 0.002 -0.074 -5.547 0.000 

Trust in local authority -0.002 0.001 -0.032 -3.468 0.001 

Satisfaction with living place -0.002 0.001 -0.017 -1.898 0.058 

Adjusted R Square = 0.18;          F (11, 10 095) 198.387; p< .000        CV  = -0.032/ -0.087 (= 0.37) 

 
It is worth noting that the measures used here are not exactly of the same 

type as those analysed in the literature where, for instance, individual earning 
rather than average income per person in household is used. But, in spite of that 
the fact that results are consistent with other discussed in the literature confirms 
usefulness of such an approach, even when public statistics data are used 
(not necessarily fully comparable with other data). 

The second question, concerning the relative impact of social capital vs. 
income, is also addressed in a simplified version as the former is presented here 
by positive declaration of trust in local authority. However, there is a substantial 
'compensating' effect of the community social capital on individual well-being 
(acc. to U-index) - living in environment characterized by good relations between 
residents and public administration is indicative of a possibly cushioning effect for 
households vulnerable to income shock. 
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Cross-level relationships depend, however, on both individual and community 
level factors, and multilevel modelling.      

The following model was calculated using also data from EU SILC, with 
household equivalised  disposable income per person as an indicator of individual 
well-being:  

  Individual Well-BeingH’hld eqv. disp. income = γ
00

 + γ
10

 ability
_to-meet-ends

 + γ
20

 time-on-

job + γ
01

 MILD + γ
11

ability
_tme

*MILD
j
 + γ

21
time-on-job * MILD

j
 + u

1j 
ability_

tme 
+ u

2j
 

time-on-job + u
0j 

+ e
ij
        

It is assumed that such a specification of cross-level (between individual and 
community/gmina measures of well-being, with cross-level interaction effect, 
should ensure robust estimation (e.g. Subramanian. op. cit. p. 521; Hox et al. 
2017). 

Table 2.  Multilevel regression of individual well-being – household equivalised 
disposable income per person – on community and individual level 
factors with interaction terms. 

 Unstand. 
Coefficients 

Stand. 

Coeff. 

 

Predictors B Std. Error Beta t Sign. 

(Constant) 9.687 0.425  22.784 0.000 

Ability to ’meet the ends’ (binary) 0.049 0.019 0.041 2.583 0.010 

Time on job and commuting 0.028 0.016 0.280 1.698 0.090 

MILD /Multidimensional Index of 
Local  Deprivation (2016) 

-0.023 0.005 -0.172 -4.199 0.000 

Interaction "ability to meet the ends" 
and local deprivation (MILD2016) 

0.003 0.000 0.414 26.174 0.000 

Interaction "job-time" and local 
deprivation (MILD2016) 

0.000 0.000 -0.275 -1.688 0.091 

Adjusted R Square = .240;      F (df 5, 8496) = 536,381); p< .001 

 

Negative effect of local deprivation (MILD for 2016),  both in separation and 
in interaction with time spend on work – but not with ability to meet the ends, 
which may offset this effect in better-off households - contrasts with other factors 
having positive impact on the level of well-being measured here by the household 
equivalised disposable income. It confirms the role of place and overall quality of 
the living environment (commune) for individual well-being, which on the other 
hand significantly depends on such household or person level factors as time 
spend on work, including commuting.   
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Spatial autocorrelation and spatial clustering. Moran's I for the below maps 
(from the left): (a) I=0.20 for local deprivation (MILD); (b)  I=0,09 for U-index; (c) 
I= 0,10 for U-index by MILD   

 

      local deprivation     U-index            U-index by MILD 

 

    

  
The spatial patterns of local deprivation and subjective well-being (both 

interpreted in 'negative' terms) show one important feature in common – they both 
tend to cluster around high or low values of each of these measures in a similar 
part of the country. In south-east, clusters of high deprived communes (panel a) 
and also of communes with residents high on the U-scale /‘unpleasant state’ 
(panel b) predominate. At the same time, the opposite spatial pattern prevails 
in the western (especially south-west) part of the country – in communes 
generally lower on the local deprivation scale live people with a higher level of 
well-being (lower level of dissatisfaction in the sense of the U-index). The joint 
spatial distribution of communes (gminas) according to both measures, U-index 
and MILD, is presented at the panel (c). The overall tendency to spatial 
concentration is consistent with separately characterized patterns.  

It is worth mentioning here the result obtained using an alternative approach, 
called Functional Data, allowing for taking into account the spatio-temporal 
property of data and for comparing the spatial patterns of local deprivation 
(clusters) and subjective well-being  for a long-term period (Krzyśko, Okrasa and 
Wołynski, 2019). The above identified patterns are shown to be even stronger 
in terms of the autocorrelation coefficient (Moran’s I), following the same trends 
along the East-West geographic axes, and providing useful suggestions for 
practitioners and decision makers responsible for allocation of public resources 

a. 

 

b. 

 

c. 

 

Figure 2.  Spatial autocorrelation – Moran's maps 
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for improving both of these areas of concern, i.e. local development and individual 
well-being. 

Table 3. Spatial dependence - spatial regression of Subjective Well-Being on 
commune’s attributes and compositional characteristics 

SPATIAL ERROR MODEL – MAXIMUM LIKELIHOOD ESTIMATION  

Dependent Variable: U –index Number of Observations: 937;  
Number of Variables: 8; Degrees of Freedom: 929; Lag coeff. (Lambda):  0.43;  
R-squared: 0.12  

Variable Coefficient Std.Error z-value Probability 

Constant 0.523731 0.042847 12.2233 0.00000 

Monthly income -0.002730 0.001960 -1.40359 0.16044 

Age_avg (%) -0.014313 0.005653 -2.53177 0.01135 * 

Education_hs+ (%) 0.000381 0.000222 1.71849 0.08571 * 

Not working pop. (%) -0.001304 0.000273 -4.77623 0.00000 * 

Index of loc.depr.-ecology 0.000560 0.000462 1.21309 0.22510 

Index of loc. depr._Soc. 
Welfare -0.000415 0.000312 -1.32693 0.18453 

Subsidies_pc 1.2323e-005 1.1588e-05 1.06344 0.28758 

Lambda 0.431769 0.0677941 6.36883 0.00000 

4. Discussion and Conclusion: 

Research on individual and community well-being requires data from both 
individual and community level and  both objective and subjective measures 
in order to explore effectively the relationship in which they remains, and are 
influenced by such crucial factors as community cohesion, including social capital. 
As the role of such factors is shown to be important in the local development 
context, their effects need to be taken into account in the policy about allocation 
of scarce resources among communes (gminas), especially during the hard time. 
It might be hopped that communes characterized by a given level of local 
deprivation but with a higher level of social capita and social cohesion are, on 
average, less vulnerable to external shocks and are more capable to arrange 
resources for endogenous, community-based development than others.   

Bringing space into analysis gives insight into processes which actually take 
place on a larger scale than own community – spatial dependency confirms this, 
suggesting spatio-temporal analytical framework. In particular, for the purpose 
of rational policy design and evaluation. Individual well-being increases along with 
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greater household income. However, community deprivation reinforces 
significantly the subjective well-being effect of individual income. Also, deprivation 
in several domains shows a negative association with U-index (such as risk 
associated with deprivation in  local social welfare). 

Working with existing databases, e.g. public files of official statistics, has its 
advantages and disadvantages, which needs to be recognized to enhance 
integration procedures in constructing a multi-source analytical database. 
Nevertheless, geographically referred data provide a promising land of 
opportunities for policy analysis focused on well-being as the ultimate target of the 
local development.  
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ABSTRACT 

The most dominant problem in the survey sampling is to obtain the better ratio 
estimators for the estimation of population mean or population variance. 
Estimation theory is enhanced by using the auxiliary information in order to 
improve on designs, precision and efficiency of estimators. A modified class of 
ratio estimator is suggested in this paper to estimate the population mean. 
Expressions for the bias and the mean square error of the proposed estimators 
are obtained. Both analytical and numerical comparison has shown the suggested 
estimator to be more efficient than some existing ones. The bias of the suggested 
estimator is also found to be negligible for the population under consideration, 
indicating that the estimator is as good the regression estimator and better than 
the other estimators under consideration. 

Key words: ratio type estimators, auxiliary information, bias, mean square error, 

simple random sampling, efficiency. 

AMS Subject Classification: 62D05 

1. Introduction 

In sample surveys, auxiliary information on the finite population under study is 
quite often available from previous experience, census or administrative 
databases. The sampling literature describes different procedures for using 
auxiliary information to improve the sampling design and/or obtain more efficient 
estimators. The use of auxiliary information at the estimation stage has been dealt 
at great dealt at great length for improving estimation in sample surveys. In 
sample surveys, auxiliary information is used at selection as well as estimation 
stages to improve the design as well as obtaining more efficient estimators. 

Increased precision can be obtained when the study variable Y  is highly 

correlated with auxiliary variable X . 
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Usually, in a class of efficient estimators, the estimators with minimum 
variance or mean square error is regarded as the most efficient estimator. A good 
estimator can also be described by the value of its bias. An estimator with 
minimum absolute bias is regarded as a better estimator among others in the 
class (Rajesh et al., 2011). 

When the population mean of an auxiliary variable is known, so many 
estimators for the population parameters of study variable have been discussed in 
literature. The literature on survey sampling describes a great variety of 
techniques for using auxiliary information by means of ratio, product and 
regression methods. 

If the regression line of the character of interest Y  on the auxiliary variable, 

X  is through the origin and when correlation between study and auxiliary 
variables is positive (high), then the ratio estimate of mean or total may be used 
(Cochran 1940). 

On the other hand, if the regression line used for the estimate does not pass 
through the origin but makes an intercept along the y-axis, the regression 
estimation is used (Okafor, 2002). Furthermore, when correlation between study 
variable on the auxiliary variable passes through a suitable neighbourhood of the 
origin, in which case, the efficiencies of these estimators are almost equal. When 

the population parameters of the auxiliary variable X  such as population mean, 
coefficient of variation, coefficient of kurtosis, coefficient of skewness, median are 
known, a number of modified estimators such as modified ratio estimators, 
modified product estimators and modified linear regression estimators have been 
proposed and is widely acceptable in the literature. 

This paper is another attempt in solving this problem. An alternative ratio 

estimator for population mean of the study variable Y  (see Sharma and Singh 
(2014,15), which is more efficient than some of the existing estimators is 

suggested using the information on one auxiliary variable, X , that is highly 
correlated with the study variable. 

2.  Review of the existing estimators 

To enhance effective comparison, we summarize below some existing 
estimators, their biases and mean square errors. 

Consider a finite population of N  distinct and identifiable units 

}...,,,,{ 321 NGGGGG  . Let a sample of size n  be drawn from the population 

by simple random sampling without replacement. Suppose that interest is to 

obtain a ratio estimate of the mean of a random variable Y  from the sample 

using a related variable X  as supplementary information and assuming that the 

total of X  is known from sources outside the survey. 
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Table 1.  Some existing estimators, their biases and mean square errors  

S/N Estimator Bias Mean square error 
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variables are respectively defined wherever they appear. 

3.  Suggested estimator 

The proposed ratio estimator is obtained by forming linear combination of 
Subramani and Kumarapandiyan (2012) and Kadilar and Cingi (2004) estimators 
as shown below: 
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Such that 1   

3.1. Bias and mean square error of the proposed estimator 

To obtain the approximate expression for the bias and the mean squared 
error for the proposed ratio estimator, let 
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By Taylor Series approximation up to order 2, the expression becomes 

222

222

)(

)1()1(

xxxxxyyxx

xyyxxxyyxxpr

e
Y

X
Be

Y

X
Be

Y

X
Be

Y

X
BeeeeeY

eeeeeYeweeezaeYy









 

]

1[

222

222

xxxxxyyx

xxyyxxxyyxx

e
Y

X
Be

Y

X
Be

Y

X
Be

Y

X
Beeee

eeeeeeeweeeaaeY









 

 
The expression for the bias of this estimator to first order approximation is 

obtained as follows: 
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3.2. Optimal conditions for the proposed estimator 

To obtain the value of   that minimizes the MSE, we take partial derivative of 

equation (5) with respect to   and equate to zero as follows: 
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Substituting for (6) in (5) gives the optimal MSE for pry  as: 
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4. Efficiency comparison 

In order to compare the efficiency of the various existing estimators with that 
of proposed estimators, we require the expressions of mean square error of these 
estimators, up to first order approximation. An analytical comparison of the 
proposed estimator with three of the existing estimators namely: the classical, 
Subramani and Kumarapandiyan (2012) and Kadilar and Cingi (2004) estimators 
are carried out. 

4.1.  Efficiency comparison of proposed and classical    

In this section, the analytical condition under which the proposed estimator 
will be more efficient than classical ratio estimator is established. 
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Since the expression in the square bracket is always positive, we conclude 
that the proposed estimator will always be more efficient than the classical ratio 
estimator. 

4.2.  Efficiency comparison of proposed and Subramani and 
 Kumarapandiyan 
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Therefore, for the proposed estimator to be more efficient than Yan and Tian 
(2010), the terms in the second bracket must be positive. This implies that: 
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4.3.  Efficiency comparison of proposed and Kadilar and Cingi 
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Since the expression in the square bracket of equation (11) is always positive, 
it therefore means that the proposed estimator will always be more efficient than 
Kadilar and Cingi (2004) estimator of population mean. 

5.  Numerical comparison 

In this section, to study the performance of the estimator presented in this 
work, we consider empirical population. The source of the population is Singh and 
Chaudhary (1986) and the values of requisite population parameters are given. 
We compare the efficiency of the proposed estimator with the existing estimators 
using the known population data. 

Table 2.  Data Statistics for population 

Parameters Population Parameters Population 

N  34 xC  0.7531 

n  20 Md  150 

Y  856.4117 1  1.1823 

X  199.4412 BUCC xy  )(  0.50620 

  0.4453 MdXXa   0.58204 

yS  733.1407 YXM   0.23288 

yC  0.8561 xy SSB   2.17333 

xS  150.2150 XYR   4.29406 
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Table 3.  Estimators, biases, MSE and % relative efficiency for population. 

Population 

Estimator MSE 
Bias of the 
estimator 

% Relative 
efficiency 

cly  12557.99 5.658 100.00 

SKy  10236.38 3.293 122.67 

KCy  19977.62 11.457 62.86 

pry  10165.43 -0.069 123.53 

6.  Discussion 

Optimal mean square error (MSE) of the proposed estimators given in 
Equation (7) has the same expression as the MSE of the regression estimator 
which is known to be more efficient than the ratio and the product estimators. The 
comparison of the suggested estimator with the three existing estimators are 
derived analytically and these comparisons show that the suggested estimators 
are more efficient than the classical ratio (1940), Kadilar and Cingi (2004) 
estimators and preferred over the Subramani and Kumarapandiyan (2012) 
estimator when the condition stated in the equation (10) is satisfied.  

From empirical study, results in the Table 3 reveals that our suggested 
estimators has lower mean square error than the classical ratio (1940), Kadilar 
and Cingi (2004) and Subramani and Kumarapandiyan (2012) in the population 
under consideration, showing that the suggested estimator is more efficient than 
all the other estimators under consideration. This due to the fact that the 
suggested estimator is equally as efficient as the regression estimator and 
confirms Cochran (1940), Robson (1957), Murthy (1967) and Perri (2005) 
assertion that the regression estimator is generally more efficient than the ratio 
and product estimators. 

Analyses of biases have also shown that the suggested estimator have 
smallest bias than the all other estimators under consideration. From the Table 3, 
also from bias point of view, bias is negligible and agrees with the assertion of the 
Okafor (2002) that any estimator with relative bias less than 10% is considered to 
have a negligible bias. 

7. Conclusion 

Since the from the equation (7) the suggested estimator gives the same 
precision as the regression estimator and is consistently better in terms of bias 
and efficiency then  the three estimators under consideration, the suggested 
estimator can always be used as an alternative to the regression estimator and 
gives a better replacement to some existing ratio estimators. 
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